3 research outputs found

    Excellent agreement between genetic and hydrogen breath tests for lactase deficiency and the role of extended symptom assessment

    Get PDF
    Clinical manifestations of lactase (LCT) deficiency include intestinal and extra-intestinal symptoms. Lactose hydrogen breath test (H2-BT) is considered the gold standard to evaluate LCT deficiency (LD). Recently, the single-nucleotide polymorphism C/T−13910 has been associated with LD. The objectives of the present study were to evaluate the agreement between genetic testing of LCT C/T−13910 and lactose H2-BT, and the diagnostic value of extended symptom assessment. Of the 201 patients included in the study, 194 (139 females; mean age 38, range 17-79 years, and 55 males, mean age 38, range 18-68 years) patients with clinical suspicion of LD underwent a 3-4h H2-BT and genetic testing for LCT C/T−13910. Patients rated five intestinal and four extra-intestinal symptoms during the H2-BT and then at home for the following 48h. Declaring H2-BT as the gold standard, the CC−13910 genotype had a sensitivity of 97% and a specificity of 95% with a κ of 0·9 in diagnosing LCT deficiency. Patients with LD had more intense intestinal symptoms 4h following the lactose challenge included in the H2-BT. We found no difference in the intensity of extra-intestinal symptoms between patients with and without LD. Symptom assessment yielded differences for intestinal symptoms abdominal pain, bloating, borborygmi and diarrhoea between 120min and 4h after oral lactose challenge. Extra-intestinal symptoms (dizziness, headache and myalgia) and extension of symptom assessment up to 48h did not consistently show different results. In conclusion, genetic testing has an excellent agreement with the standard lactose H2-BT, and it may replace breath testing for the diagnosis of LD. Extended symptom scores and assessment of extra-intestinal symptoms have limited diagnostic value in the evaluation of L

    Excellent agreement between genetic and hydrogen breath tests for lactase deficiency and the role of extended symptom assessment

    Get PDF
    Clinical manifestations of lactase (LCT) deficiency include intestinal and extra-intestinal symptoms. Lactose hydrogen breath test (H2-BT) is considered the gold standard to evaluate LCT deficiency (LD). Recently, the single-nucleotide polymorphism C/T(-13910) has been associated with LD. The objectives of the present study were to evaluate the agreement between genetic testing of LCT C/T(-13910) and lactose H2-BT, and the diagnostic value of extended symptom assessment. Of the 201 patients included in the study, 194 (139 females; mean age 38, range 17-79 years, and 55 males, mean age 38, range 18-68 years) patients with clinical suspicion of LD underwent a 3-4 h H2-BT and genetic testing for LCT C/T(-13910). Patients rated five intestinal and four extra-intestinal symptoms during the H2-BT and then at home for the following 48 h. Declaring H2-BT as the gold standard, the CC(-13910) genotype had a sensitivity of 97% and a specificity of 95% with a κ of 0.9 in diagnosing LCT deficiency. Patients with LD had more intense intestinal symptoms 4 h following the lactose challenge included in the H2-BT. We found no difference in the intensity of extra-intestinal symptoms between patients with and without LD. Symptom assessment yielded differences for intestinal symptoms abdominal pain, bloating, borborygmi and diarrhoea between 120 min and 4 h after oral lactose challenge. Extra-intestinal symptoms (dizziness, headache and myalgia) and extension of symptom assessment up to 48 h did not consistently show different results. In conclusion, genetic testing has an excellent agreement with the standard lactose H2-BT, and it may replace breath testing for the diagnosis of LD. Extended symptom scores and assessment of extra-intestinal symptoms have limited diagnostic value in the evaluation of LD
    corecore