81,635 research outputs found

    Coherent lidar signal fluctuation reduction by means of frequency diversity technique

    Get PDF
    The atmospheric return measured by a coherent lidar is typically characterized by rapid and deep fluctuations in signal strength. These fluctuations result from the interference of the fields backscattered to the lidar from randomly located aerosol particles which move relative to the lidar pulse. In many applications, it is necessary to determine the average value of the lidar signal intensity at some range. A new method utilizes frequency diversity initially suggested by Goldstein and subsequently studied in the microwave radar domain by others. It is expected that the application of the frequency diversity method in the coherent lidar domain will eventually provide greater efficiency and speed in the return signal averaging needed to obtain accurate intensity estimates. The frequency diversity method recognizes that the transmitted lidar pulse is very long compared to a wavelength and consequently a given phase, theta sub i, is repeated many times within the pulse. In order to test this concept, a fairly simple laboratory experiment was designed which simulates scattering of a lidar pulse from atmospheric aerosol. The testing of the frequency diversity method is discussed

    Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Get PDF
    In this paper, we extend Parikh' work to the non-stationary black hole. As an example of the non-stationary black hole, we study the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. We find that the result is different from Parikh's work because drHdv\frac{dr_{H}}{dv} is the function of Bondi mass m(v)
    • …
    corecore