3,234 research outputs found

    Total Dual Integrality in Some Facility Location Problems

    Get PDF
    published_or_final_versio

    Contextual cueing: implicit memory of tactile context facilitates tactile search

    Get PDF
    In visual search, participants detect and subsequently discriminate targets more rapidly when these are embedded in repeatedly encountered distractor arrangements, an effect termed contextual cueing (Chun & Jiang Cognitive Psychology, 36, 28–71, 1998). However, whereas previous studies had explored contextual cueing exclusively in visual search, in the present study we examined the effect in tactile search using a novel tactile search paradigm. Participants were equipped with vibrotactile stimulators attached to four fingers on each hand. A given search array consisted of four stimuli (i.e., two items presented to each hand), with the target being an odd-one-out feature singleton that differed in frequency (Exps. 1 and 2) or waveform (Exp. 3) from the distractor elements. Participants performed a localization (Exps. 1 and 2) or discrimination (Exp. 3) task, delivering their responses via foot pedals. In all three experiments, reaction times were faster when the arrangement of distractor fingers predicted the target finger. Furthermore, participants were unable to explicitly discriminate repeated from nonrepeated tactile configurations (Exps. 2 and 3). This indicates that the tactile modality can mediate the formation of configural representations and use these representations to guide tactile search

    Multifractal analysis of complex networks

    Full text link
    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions DqD_{q} of some theoretical networks, namely scale-free networks, small world networks and random networks, and one kind of real networks, namely protein-protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein-protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of DqD_{q} due to changes in the parameters of the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Enhancement of Friction between Carbon Nanotubes: An Efficient Strategy to Strengthen Fibers

    Full text link
    Interfacial friction plays a crucial role in the mechanical properties of carbon nanotube based fibers, composites, and devices. Here we use molecular dynamics simulation to investigate the pressure effect on the friction within carbon nanotube bundles. It reveals that the intertube frictional force can be increased by a factor of 1.5 ~ 4, depending on tube chirality and radius, when all tubes collapse above a critical pressure and when the bundle remains collapsed with unloading down to atmospheric pressure. Furthermore, the overall cross-sectional area also decreases significantly for the collapsed structure, making the bundle stronger. Our study suggests a new and efficient way to reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at ambient conditions.Comment: revtex, 5 pages, accepted by ACS Nano 10 Dec 200
    • …
    corecore