70,305 research outputs found

    An investigation of air and water dual adjustment decoupling control of surface heat exchanger

    Get PDF
    The terminal equipment of central cooling system accounts for a significant proportion of the total system's energy consumption. Therefore, it is important to reduce the terminal equipment energy consumption in central air conditioning system. In this study, the difference of the effect of the chilled water flow rate and air supply rate on the surface cooler during the heat transfer process is taken into full account. Matlab/Simulink simulation software is used to model and simulate the heat transfer of surface cooler of the main terminal equipment of air conditioning system. Simulation tests and experimental validations are conducted by using variable chilled water flow rate and variable air supply rate control mode separately. The experiment results show that the simulation model can effectively predict the heat transfer performance of heat exchanger. Further, the study introduced a dual feedback control mode, which synchronously regulates the chilled water flow rate and air supply rate. Also, under certain conditions, the complex heat transfer process of the surface cooler can be decoupled, and single variable control pattern is used to separately regulate the chilled water flow rate and air supply rate. This can effectively shorten the system regulation time, reduce overshoot and improve control performance

    On effects of regular S=1 dilution of S=1/2 antiferromagnetic Heisenberg chains by a quantum Monte Carlo simulation

    Full text link
    The effects of regular S=1 dilution of S=1/2 isotropic antiferromagnetic chain are investigated by the quantum Monte Carlo loop/cluster algorithm. Our numerical results show that there are two kinds of ground-state phases which alternate with the variation of S1=1S^1=1 concentration. When the effective spin of a unit cell is half-integer, the ground state is ferrimagnetic with gapless energy spectrum and the magnetism becomes weaker with decreasing of the S1S^1 concentration ρ=1/M\rho = 1/M. While it is integer, a non-magnetic ground state with gaped spectrum emerges and the gap gradually becomes narrowed as fitted by a relation of Δ≈1.25ρ\Delta \approx 1.25\sqrt{\rho}.Comment: 6 pages, 9 figure

    Quakes in Solid Quark Stars

    Full text link
    A starquake mechanism for pulsar glitches is developed in the solid quark star model. It is found that the general glitch natures (i.e., the glitch amplitudes and the time intervals) could be reproduced if solid quark matter, with high baryon density but low temperature, has properties of shear modulus \mu = 10^{30~34} erg/cm^3 and critical stress \sigma_c = 10^{18~24} erg/cm^3. The post-glitch behavior may represent a kind of damped oscillations.Comment: 11 pages, 4 figures (but Fig.3 is lost), a complete version can be obtained by http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.htm, a new version to be published on Astroparticle Physic

    Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Full text link
    Photo-transmutation of long-lived nuclear waste induced by high-charge relativistic electron beam (e-beam) from laser plasma accelerator is demonstrated. Collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example, the resulting transmutation reaction yield is the order of 10^{9} per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm

    Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport–conduit flow process model

    Get PDF
    VDFST-CFP (variable-density flow and solute transport–conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711
    • 

    corecore