14,993 research outputs found
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
Temperature - pressure phase diagram of the superconducting iron pnictide LiFeP
Electrical-resistivity and magnetic-susceptibility measurements under
hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting
LiFeP. A broad superconducting (SC) region exists in the temperature - pressure
(T-p) phase diagram. No indications for a spin-density-wave transition have
been found, but an enhanced resistivity coefficient at low pressures hints at
the presence of magnetic fluctuations. Our results show that the
superconducting state in LiFeP is more robust than in the isostructural and
isoelectronic LiFeAs. We suggest that this finding is related to the nearly
regular [FeP_4] tetrahedron in LiFeP.Comment: 4 pages, 4 figure
A new 111 type iron pnictide superconductor LiFeP
A new iron pnictide LiFeP superconductor was found. The compound crystallizes
into a Cu2Sb structure containing an FeP layer showing superconductivity with
maximum Tc of 6K. This is the first 111 type iron pnictide superconductor
containing no arsenic. The new superconductor is featured with itinerant
behavior at normal state that could helpful to understand the novel
superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl
Multiparty simultaneous quantum identity authentication based on entanglement swapping
We present a multiparty simultaneous quantum identity authentication protocol
based on entanglement swapping. In our protocol, the multi-user can be
authenticated by a trusted third party simultaneously
- …
