62,698 research outputs found
Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling
The spin-dependent density of states and the density of spin polarization of
an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling
under an intense terahertz laser field are investigated by utilizing the
Floquet states to solve the time-dependent Schr\"odinger equation.
It is found that both densities are strongly affected by the terahertz laser
field. Especially a terahertz magnetic moment perpendicular to the external
terahertz laser field in the electron gas is induced. This effect can be used
to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte
Possible TeV Source Candidates In The Unidentified EGRET Sources
We study the -ray emission from the pulsar magnetosphere based on
outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through
inverse Compton scattering using a one-zone model. We showed previously that
GeV radiation from the magnetosphere of mature pulsars with ages of years old can contribute to the high latitude unidentified EGRET
sources. We carry out Monte Carlo simulations of -ray pulsars in the
Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position,
proper motion velocity, period, and magnetic field distribution and evolution
based on observational statistics. We select from the simulation a sample of
mature pulsars in the Galactic plane () and in the high
latitude () which could be detected by EGRET. The TeV flux from
the pulsar wind nebulae of our simulated sample through the inverse Compton
scattering by relativistic electrons on the microwave cosmic background and
synchrotron seed photons are calculated. The predicted fluxes are consistent
with the present observational constraints. We suggest that strong EGRET
sources can be potential TeV source candidates for present and future
ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres
Measuring dark energy with the correlation of gamma-ray bursts using model-independent methods
In this paper, we use two model-independent methods to standardize long
gamma-ray bursts (GRBs) using the correlation, where
is the isotropic-equivalent gamma-ray energy and is
the spectral peak energy. We update 42 long GRBs and try to make constraint on
cosmological parameters. The full sample contains 151 long GRBs with redshifts
from 0.0331 to 8.2. The first method is the simultaneous fitting method. The
extrinsic scatter is taken into account and assigned to the
parameter . The best-fitting values are ,
, and in the flat
CDM model. The constraint on is at the
1 confidence level. If reduced method is used, the best-fit
results are , and . The
second method is using type Ia supernovae (SNe Ia) to calibrate the correlation. We calibrate 90 high-redshift GRBs in the redshift
range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are
for flat CDM, and
and for non-flat
CDM. For the combination of GRB and SNe Ia sample, we obtain
and for the flat CDM, and
for the non-flat CDM, the results are ,
and . These results from
calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined
data can improve cosmological constraints significantly, comparing to SNe Ia
alone. Our results show that the correlation is
promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains
calibrated distance moduli of GRB
Flavor violating decays of the Higgs bosons in the THDM-III
We calculate the branching ratios for the decays of neutral Higgs bosons
() into pairs of fermions, including flavor violating
processes, in the context of the General Two Higgs Doublet Model III.Comment: 23 pages, 10 figures, 6 tables. Text clarifying equations and
references added, typos correction
Existence and Lyapunov stability of periodic solutions for generalized higher-order neutral differential equations
Existence and Lyapunov stability of periodic solutions for a generalized higher-order neutral differential equation are established. Copyright © 2011 Jingli Ren et al.published_or_final_versio
Phase Diagram and Calorimetric Properties of NaFeCoAs
We measured the resistivity and magnetic susceptibility to map out the phase
diagram of single crystalline NaFeCoAs. Replacement of Fe by Co
suppresses both the structural and magnetic transition, while enhances the
superconducting transition temperature () and superconducting
component fraction. Magnetic susceptibility exhibits temperature-linear
dependence in the high temperatures up to 500 K for all the superconducting
samples, but such behavior suddenly breaks down for the non-superconducting
overdoped crystal, suggesting that the superconductivity is closely related to
the T-linear dependence of susceptibility. Analysis on the
superconducting-state specific heat for the optimally doped crystal provides
strong evidence for a two-band s-wave order parameter with gap amplitudes of
= 1.78 and =3.11, being consistent with the nodeless gap symmetry revealed by
angle-resolved photoemission spectroscopy experiment.Comment: 7 pages, 7 figure
Initiation and Early Kinematic Evolution of Solar Eruptions
We investigate the initiation and early evolution of 12 solar eruptions,
including six active region hot channel and six quiescent filament eruptions,
which were well observed by the \textsl{Solar Dynamics Observatory}, as well as
by the \textsl{Solar TErrestrial RElations Observatory} for the latter. The
sample includes one failed eruption and 11 coronal mass ejections, with
velocities ranging from 493 to 2140~km~s. A detailed analysis of the
eruption kinematics yields the following main results. (1) The early evolution
of all events consists of a slow-rise phase followed by a main-acceleration
phase, the height-time profiles of which differ markedly and can be best fit,
respectively, by a linear and an exponential function. This indicates that
different physical processes dominate in these phases, which is at variance
with models that involve a single process. (2) The kinematic evolution of the
eruptions tends to be synchronized with the flare light curve in both phases.
The synchronization is often but not always close. A delayed onset of the
impulsive flare phase is found in the majority of the filament eruptions (5 out
of 6). This delay, and its trend to be larger for slower eruptions, favor ideal
MHD instability models. (3) The average decay index at the onset heights of the
main acceleration is close to the threshold of the torus instability for both
groups of events (although based on a tentative coronal field model for the hot
channels), suggesting that this instability initiates and possibly drives the
main acceleration.Comment: Accepted for publication in ApJ; 24 pages, 12 figures, 3 table
- …
