81,368 research outputs found

    GRB 030226 in a Density-Jump Medium

    Full text link
    We present an explanation for the unusual temporal feature of the GRB 030226 afterglow. The R-band afterglow of this burst faded as ~ t^{-1.2} in ~ 0.2 days after the burst, rebrightened during the period of ~ 0.2 - 0.5 days, and then declined with ~ t^{-2.0}. To fit such a light curve, we consider an ultrarelativistic jetted blast wave expanding in a density-jump medium. The interaction of the blast wave with a large density jump produces relativistic reverse and forward shocks. In this model, the observed rebrightening is due to emissions from these newly forming shocks, and the late-time afterglow is caused by sideways expansion of the jet. Our fitting implies that the progenitor star of GRB 030226 could have produced a stellar wind with a large density jump prior to the GRB onset.Comment: 9 pages, 1 figure, accepted for publication in ApJ Letter

    Resonant Tunneling through S- and U-shaped Graphene Nanoribbons

    Full text link
    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks are found eminating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure

    Optical Flashes and Very Early Afterglows in Wind Environments

    Full text link
    The interaction of a relativistic fireball with its ambient medium is described through two shocks: a reverse shock that propagates into the fireball, and a forward shock that propagates into the medium. The observed optical flash of GRB 990123 has been considered to be the emission from such a reverse shock. The observational properties of afterglows suggest that the progenitors of some GRBs may be massive stars and their surrounding media may be stellar winds. We here study very early afterglows from the reverse and forward shocks in winds. An optical flash mainly arises from the relativistic reverse shock while a radio flare is produced by the forward shock. The peak flux densities of optical flashes are larger than 1 Jy for typical parameters, if we do not take into account some appropriate dust obscuration along the line of sight. The radio flare always has a long lasting constant flux, which will not be covered up by interstellar scintillation. The non-detections of optical flashes brighter than about 9th magnitude may constrain the GRBs isotropic energies to be no more than a few 105210^{52} ergs and wind intensities to be relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200
    corecore