13,709 research outputs found
Fe-doping induced superconductivity in charge-density-wave system 1T-TaS2
We report the interplay between charge-density-wave (CDW) and
superconductivity of 1-FeTaS ()
single crystals. The CDW order is gradually suppressed by Fe-doping,
accompanied by the disappearance of pseudogap/Mott-gap as shown by the density
functional theory (DFT) calculations. The superconducting state develops at low
temperatures within the CDW state for the samples with the moderate doping
levels. The superconductivity strongly depends on within a narrow range,
and the maximum superconducting transition temperature is 2.8 K as . We
propose that the induced superconductivity and CDW phases are separated in real
space. For high doping level (), the Anderson localization (AL) state
appears, resulting in a large increase of resistivity. We present a complete
electronic phase diagram of 1-FeTaS system that shows a
dome-like
Vortex Phase Diagram of Layered Superconductor Cu0.03TaS2 for H || c
The magnetization and anisotropic electrical transport properties have been
measured in high quality Cu0.03TaS2 single crystal. A pronounced peak effect
has been observed, indicating that the high quality and homogeneity are vital
to peak effect. A kink has been observed in the magnetic field H dependence of
the in-plane resistivity {\rho}ab for H || c, which corresponds to a transition
from activated to diffusive behavior of vortex liquid phase. In the diffusive
regime of the vortex liquid phase, the in-plane resistivity {\rho}ab shows
{\rho}ab H0.3 relation, which does not follow the Bardeen-Stephen law
for free flux flow. Finally, a simplified vortex phase diagram of Cu0.03TaS2
for H || c is given.Comment: 28 pages, 9 figure
On the Integrability, B\"Acklund Transformation and Symmetry Aspects of a Generalized Fisher Type Nonlinear Reaction-Diffusion Equation
The dynamics of nonlinear reaction-diffusion systems is dominated by the
onset of patterns and Fisher equation is considered to be a prototype of such
diffusive equations. Here we investigate the integrability properties of a
generalized Fisher equation in both (1+1) and (2+1) dimensions. A Painlev\'e
singularity structure analysis singles out a special case () as
integrable. More interestingly, a B\"acklund transformation is shown to give
rise to a linearizing transformation for the integrable case. A Lie symmetry
analysis again separates out the same case as the integrable one and
hence we report several physically interesting solutions via similarity
reductions. Thus we give a group theoretical interpretation for the system
under study. Explicit and numerical solutions for specific cases of
nonintegrable systems are also given. In particular, the system is found to
exhibit different types of travelling wave solutions and patterns, static
structures and localized structures. Besides the Lie symmetry analysis,
nonclassical and generalized conditional symmetry analysis are also carried
out.Comment: 30 pages, 10 figures, to appear in Int. J. Bifur. Chaos (2004
Anomalous thermoelectric effects of ZrTe in and beyond the quantum limit
Thermoelectric effects are more sensitive and promising probes to topological
properties of emergent materials, but much less addressed compared to other
physical properties. Zirconium pentatelluride (ZrTe) has inspired active
investigations recently because of its multiple topological nature. We study
the thermoelectric effects of ZrTe in a magnetic field and find several
anomalous behaviors. The Nernst response has a steplike profile near zero field
when the charge carriers are electrons only, suggesting the anomalous Nernst
effect arising from a nontrivial profile of Berry curvature. Both the
thermopower and Nernst signal exhibit exotic peaks in the strong-field quantum
limit. At higher magnetic fields, the Nernst signal has a sign reversal at a
critical field where the thermopower approaches to zero. We propose that these
anomalous behaviors can be attributed to the Landau index inversion, which is
resulted from the competition of the dependence of the Dirac-type
Landau bands and linear- dependence of the Zeeman energy ( is the
magnetic field). Our understanding to the anomalous thermoelectric properties
in ZrTe opens a new avenue for exploring Dirac physics in topological
materials.Comment: 6 pages, 4 figure
Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons
The universal conductance fluctuations (UCFs), one of the most important
manifestations of mesoscopic electronic interference, have not yet been
demonstrated for the two-dimensional surface state of topological insulators
(TIs). Even if one delicately suppresses the bulk conductance by improving the
quality of TI crystals, the fluctuation of the bulk conductance still keeps
competitive and difficult to be separated from the desired UCFs of surface
carriers. Here we report on the experimental evidence of the UCFs of the
two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The
solely-B\perp-dependent UCF is achieved and its temperature dependence is
investigated. The surface transport is further revealed by weak
antilocalizations. Such survived UCFs of the topological surface states result
from the limited dephasing length of the bulk carriers in ternary crystals. The
electron-phonon interaction is addressed as a secondary source of the surface
state dephasing based on the temperature-dependent scaling behavior
Generation of finite wave trains in excitable media
Spatiotemporal control of excitable media is of paramount importance in the
development of new applications, ranging from biology to physics. To this end
we identify and describe a qualitative property of excitable media that enables
us to generate a sequence of traveling pulses of any desired length, using a
one-time initial stimulus. The wave trains are produced by a transient
pacemaker generated by a one-time suitably tailored spatially localized finite
amplitude stimulus, and belong to a family of fast pulse trains. A second
family, of slow pulse trains, is also present. The latter are created through a
clumping instability of a traveling wave state (in an excitable regime) and are
inaccessible to single localized stimuli of the type we use. The results
indicate that the presence of a large multiplicity of stable, accessible,
multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure
Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy
The electrical detection of the surface states of topological insulators is
strongly impeded by the interference of bulk conduction, which commonly arises
due to pronounced doping associated with the formation of lattice defects. As
exemplified by the topological insulator Bi2Te2Se, we show that via van der
Waals epitaxial growth on thin hBN substrates the structural quality of such
nanoplatelets can be substantially improved. The surface state carrier mobility
of nanoplatelets on hBN is increased by a factor of about 3 compared to
platelets on conventional Si/SiOx substrates, which enables the observation of
well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the
possibility to effectively tune the Fermi level position in the films with the
aid of a back gate
Identification of candidate anti-cancer molecular mechanisms of compound kushen injection using functional genomics
Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.Zhipeng Qu, Jian Cui, Yuka Harata-Lee, Thazin Nwe Aung, Qianjin Feng, Joy M. Raison, Robert Daniel Kortschak, David L. Adelso
Hausdorff measure of uniform self-similar fractals
Let d ≥ 1 be an integer and E a self-similar fractal set, which is the attractor of a uniform contracting iterated function system (UIFS) on Rd. Denote by D the Hausdorff dimension, by HD(E) the Hausdorff measure and by diam (E) the diameter of E. If the UIFS is parametrised by its contracting factor c, while the set ω of fixed points of the UIFS does not depend on c, we will show the existence of a positive constant depending only on ω, such that the Hausdorff dimension is smaller than one and HD = (E) D if c is smaller than this constant. We apply our result to modified versions of various classical fractals. Moreover we present a parametrised UIFS where ω depends on c and HD (E)D, if c is small enough
- …
