
Hausdorff measure of uniform self-similar
fractals

Wolfgang Kreitmeier

February 8, 2010

Abstract

Let d ≥ 1 be an integer and E a self-similar fractal set, which is
the attractor of a uniform contracting iterated function system (UIFS)
on Rd. Denote by D the Hausdorff dimension, by HD(E) the Haus-
dorff measure and by diam(E) the diameter of E. If the UIFS is
parametrised by its contracting factor c, while the set ω of fixed points
of the UIFS does not depend on c, we will show the existence of a posi-
tive constant depending only on ω, such that the Hausdorff dimension
is smaller than one and HD(E) = diam(E)D if c is smaller than this
constant. We apply our result to modified versions of various classical
fractals. Moreover we present a parametrised UIFS where ω depends
on c and HD(E) < diam(E)D, if c is small enough.
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1 Introduction

Let d ∈ N := {1, 2, ..} and A ⊂ Rd. Let ε > 0 and I ⊂ N. The collection
of sets (Ui)i∈I is an ε−cover of A, if A is covered by the union of all Ui and
each set Ui does have at most diameter ε, i.e.

diam(Ui) = sup{‖ x− y ‖: x, y ∈ Ui} ≤ ε,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Volltextserver Universität Passau

https://core.ac.uk/display/35074489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where ‖ · ‖ denotes the Euclidean norm. Introduced by Hausdorff [6], for
α ≥ 0, the α−Hausdorff measure Hα(A) of A is defined by

Hα(A) = lim
ε→0

(
inf

{∑
i∈I

diam(Ui)
α : (Ui)i∈I is an ε-cover of A

})
.

It is easy to check, that Hα(A) is non-increasing in α and that Hβ(A) > 0
for a β > 0 implies Hα(A) =∞ for all 0 ≤ α < β. Therefore, the Hausdorff
dimension of A is well-defined as

dimH(A) = sup{β ≥ 0 : Hβ(F ) =∞} = inf{β ≥ 0 : Hβ(F ) = 0}.

Although the Hausdorff dimension was computed for a large class of fractal
sets (cf. [8, 9, 16] and the references therein), the Hausdorff measure has
been calculated exactly only for a few fractals so far. Exact results for self-
similar fractal sets in one dimension were derived by several authors (cf.
[1, 14, 15, 23] and the references therein). Also in the non-self-similar case
exact values were calculated under certain conditions (cf. [18]). But for
higher dimensional fractals little is known about the exact value of their
Hausdorff measure.

The exact value of the Hausdorff measure for the classical Sierpinski gas-
ket is still unknown, but can be approximated arbitrarily well (cf. [2, 10]).
For a class of generalized Sierpinski gaskets and Sierpinski sponges, the Haus-
dorff measure was calculated exactly (cf. [5, 25, 26]). Also the Hausdorff
measure of the Sierpinski carpet was investigated by several authors (cf.
[3, 4, 21]). Recently, the exact value of the Hausdorff measure for a class of
regular homogeneous Moran sets with Hausdorff dimension greater than one
was calculated (cf. [19]). Moreover, an effective method for computing the
exact value of the Hausdorff measure of a class of self-similar fractal sets has
been provided (cf. [22]). Nevertheless, beside of these explicit calculations
for special examples, a general approach in calculating the exact value of the
Hausdorff measure of a (self-similar) fractal is still missing (cf. [24]). The
reader is also referred to Zhou et.al. [27] for another survey of open problems
in fractal geometry.

In this paper we consider uniformly contracting iterated function systems
(UIFS) and their related fractal attractor set E. If the UIFS is parametrised
by its contracting factor c, but the set ω of fixed points of the UIFS is indepen-
dent of c, we will show (cf. theorem 2.7), that the Hausdorff measure HD(E)
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of E with Hausdorff dimension D equals diam(E)D, if c is smaller than a con-
stant, which depends only on ω. If the set ω satisfies a special condition, we
can determine a lower bound for this constant (cf. theorem 2.5, remark 2.6).
In this respect we give an answer to problem 8 in [24]. Moreover we present
a parametrised UIFS, where ω depends on c and HD(E) < diam(E)D, if c is
small enough (cf. example 4.6). Our approach is based on an inverse density
characterization of HD(E), developed by several authors (cf. [1, 12, 15]).

2 Self-similar sets and their Hausdorff mea-

sure

Let N ∈ N with N ≥ 2. Let ω = {x1, .., xN} ⊂ Rd be a set consisting of N
different points, i.e. card(ω) = N if card denotes cardinality.

Recall ‖ · ‖ as the Euclidean norm on Rd and let (S1, .., SN) be a system
of contracting similitudes on Rd with ω as the set of its fixed points and
(c1, .., cN) as its contracting ratios, i.e. Si(xi) = xi and ‖ Si(x)− Si(y) ‖ =
ci ‖ x − y ‖ for every i ∈ {1, .., N} and x, y ∈ Rd. We call (S1, .., SN) an
iterated function system (IFS). It is well-known (cf. [11]), that every IFS
generates a unique nonempty compact set E ⊂ Rd, which is characterised by

E =
N⋃
i=1

Si(E). (1)

The set E is often called invariant attractor or attractor set. Moreover, ω is
a subset of E. Throughout the paper we will assume w.l.o.g that the span
of E is of dimension d. To be able to investigate the Hausdorff measure of E
we need the following well-known separation condition.

(OSC) there exists a bounded nonempty open set O ⊂ Rd such that Si(O) ⊂ O
for every i ∈ {1, .., N} and Si(O)∩ Sj(O) = ∅ for every i, j ∈ {1, .., N}
with i 6= j.

Condition (OSC) is called open set condition in the literature. Another
important separation condition is the so-called strong separation condition
(SSC), which is satisfied, if Si(E) ∩ Sj(E) = ∅ for every i, j ∈ {1, .., N} with
i 6= j. It is easy to prove (cf. [11], example 5.2.(2)(a)), that (SSC) implies
(OSC). If (OSC) is satisfied, then the Hausdorff dimension dimH(E) of E
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equals the similarity dimension D of E (cf. [11]), which is defined as the
unique real number satisfying

N∑
i=1

cDi = 1. (2)

It is also well known (cf. [11, 17]), that (OSC) implies 0 < HD(E) < ∞. If
(SSC) holds, let

h = min{dist(Si(E), Sj(E)) : i, j ∈ {1, .., N}, i 6= j} > 0.

Moreover we denote

s = min
i∈{1,..,N}

ci resp. t = max
i∈{1,..,N}

ci.

For any k ∈ N, nonempty set Γ ⊂ {1, .., N}k and σ = (σ1, .., σk) ∈ Γ we
define cσ = cσ1 · ... · cσk resp. Sσ = Sσ1 ◦ · · · ◦ Sσk and EΓ =

⋃
σ∈Γ Sσ(E).

Several authors (cf. [1, 12, 15]) introduced a characterization of HD(E)
in terms of an inverse density. In this paper we rely on the following results.

Theorem 2.1 ([15]).
(a) If dimH(E) ≤ t, then Ht(E) ≤ diam(E)t.
(b) If the IFS satisfies condition (OSC), then

0 < HD(E) = inf

{
diam(EΓ)D∑

σ∈Γ c
D
σ

; ∅ 6= Γ ⊂ {1, .., N}k, k ∈ N
}
.

(c) If the IFS satisfies condition (SSC) and D < 1, then

0 < hD ≤ HD(E) = min

{
diam(EΓ)D∑

σ∈Γ c
D
σ

; ∅ 6= Γ ⊂ {1, .., N}k0

}
,

with
k0 = min{k ∈ N : diam(E) ≤ h · s · tk(D−1)}. (3)

Remark 2.2. To be more precise we mention that assertion (a) follows from
[15, corollary 4.2]. From [15, theorem 6.2] we obtain part (b). If condition
(SSC) is satisfied, [15, corollary 6.3] yields hD ≤ HD(E). If, additionally,
D < 1, then [15, corollary 6.4] proves the remaining part of assertion (c).
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For any k ∈ N and Γ ⊂ {1, .., N}k let

IΓ = {i ∈ {1, .., N} : EΓ ∩ Si(E) 6= ∅}. (4)

If condition (SSC) and D < 1 holds, we define with k0 from (3) the set

E =

{
EΓ : Γ ⊂ {1, .., N}k0 , card(IΓ) > 1 and HD(E) =

diam(EΓ)D∑
σ∈Γ c

D
σ

}
. (5)

Remark 2.3. Assume that all conditions of theorem 2.1 (c) are satisfied

and let Γ ⊂ {1, .., N}k0 with HD(E) = diam(EΓ)D∑
σ∈Γ c

D
σ

. Assume further, that

card(IΓ) = 1. Let j ∈ {1, .., N} with IΓ = {j}. Using (1) we have EΓ ⊂
Sj(E), resp. σ1 = j for every (σ1, .., σk0) ∈ Γ. If k0 ≥ 2, then define
Γ′ = {(σ2, .., σk0) : (σ1, .., σk0) ∈ Γ}. If k0 = 1, let Γ′ = {1, .., N}. Again by
(1) we obtain EΓ′ = S−1

j (EΓ) and

diam(EΓ)D∑
σ∈Γ c

D
σ

=
cDj diam(S−1

j (EΓ))D∑
σ∈Γ c

D
σ

=
diam(EΓ′)

D∑
σ∈Γ′ c

D
σ

.

Using (1) we deduce Γ′ ⊂ {1, .., N}max(1,k0−1) ⊂ {1, .., N}k0. If necessary, we
can repeat this procedure (’blow-up principle’ cf. [1, 12]) until card(IΓ′) > 1.
Thus we can assume w.l.o.g. that card(IΓ) > 1, resp. EΓ ∈ E. Especially E
is a nonempty set.

Remark 2.4. Marion (cf. [15, theorem 7.1]) has shown additionally, that
k0 in theorem 2.1 (c) can be set equal to 1, if the IFS is one-dimensional
(d = 1). Ayer and Strichartz (cf. [1, theorem 4.2]) have also shown this re-
sult for one-dimensional IFS by an alternative proof. Both proofs depend
on one-dimensionality at some key places and cannot be generalized into
higher dimensions. If the (SSC) is satisfied (but not necessarily D < 1),
then Llorente and Morán ([12, theorem 3.3 (i)]) have proved that a compact
non-empty convex set A ⊂ Rd with h ≤ diam(A) ≤ diam(E) exists, such that

HD(E) =
diam(A)D

µ(A)
,

if µ denotes the normalized Hausdorff measure on E. One may conjecture,
that under these assumptions also a k < ∞ and Γ ⊂ {1, .., N}k exists, such

that HD(E) = diam(EΓ)D∑
σ∈Γ c

D
σ

. Unfortunately this is wrong in general for D > 1,

see e.g. [7].
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To be able to state the first main result of this paper we need some further
technical notations, which will be motivated in more detail in section 3 when
we are proving our results. Let ∅ 6= I ⊂ {1, .., N} and ωI = {xi : i ∈ I}. If
N ≥ 3 let

∆ = max

{(
diam(ω)

diam(ωI)

)D
card(I)

N
: I ⊂ {1, .., N}, 2 ≤ card(I) < N

}
. (6)

With dmin(ω) = min{‖ x− y ‖: x, y ∈ ω, x 6= y} we define

c0 =

{
min

(
(2N2)

−1
, 1

4
dmin(ω)
diam(ω)

(1−∆)
)

, if N ≥ 3
1
8

, if N = 2.
(7)

If the contracting factors of the IFS are all equal, then we call the IFS a
uniform contracting iterated function system (UIFS). The Hausdorff measure
of the invariant attractor of a UIFS can be determined if the contracting
factor c is smaller than c0. This is stated in our first main result.

Theorem 2.5. Consider a UIFS with contracting factor c and fixpoint set ω.
In case of N ≥ 3, assume that ∆ < 1. If c is smaller than c0, then condition
(SSC) and D < 1 is satisfied. Moreover, HD(E) = diam(E)D and the set E
consists only of the set E.

The examples 4.3 and 4.5 in section 4 are demonstrating the applicability
of theorem 2.5.

Remark 2.6. All quantities appearing on the right side of (7) are invariant
under a translation and/or rotation of the whole UIFS. Note, that ∆ depends
on the contracting factor c. Due to D < 1 we obtain

∆ ≤ ∆′ = max

{
diam(ω)

diam(ωI)

card(I)

N
: I ⊂ {1, .., N}, 2 ≤ card(I) < N

}
.

Thus, ∆ < 1 is satisfied, if ∆′ < 1, which depends only on ω and not on the
contracting factor c. Hence, c0 depends only on ω if we substitute ∆ by ∆′.

Let us call a UIFS parametrised, if for every i ∈ {1, .., N} the mapping
Si is parametrised by the unique contracting factor, i.e. Si = Si,c depends
on the contracting factor c. Our second main result states as follows.
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Theorem 2.7. For every parametrised UIFS where the set ω of fixed points
does not depend on the contracting factor c, there exists a positive constant,
depending only on ω, such that for every contracting factor c smaller than
this constant
(a) the UIFS satisfies condition (SSC) and D = D(c) < 1,
(b) HD(E) = diam(E)D and
(c) E consists only of the set E.

Example 4.8 demonstrates the applicability of theorem 2.7. For appli-
cations, an explicit determination of the constant in theorem 2.7 would be
preferable. This is provided by theorem 2.5 under further restrictions on the
UIFS. It is natural to ask, if the assertions of theorem 2.7 remain valid, if the
set ω of fixed points is no longer independent from the contracting factor c,
i.e. if we only require that c is small enough. Example 4.6 gives a negative
answer.

3 Proof of the main result

For any x ∈ Rd and r > 0 we denote B(x, r) = {z ∈ Rd : ‖ z − x ‖ ≤ r} as
the closed ball around x with radius r. Recall

dmin(ω) = min{‖ x− y ‖: x, y ∈ ω, x 6= y}.

For any k ≥ 2 and τ = (τ1, .., τk) ∈ {1, .., N}k we denote τ− = (τ1, .., τk−1).
First let us prove a criterion, ensuring that condition (SSC) holds for a UIFS
with contracting parameter c, attractor E and fixpoint set ω.

Lemma 3.1.
(a) If c < 1

2
, then diam(E) < diam(ω)

1−2c
.

(b) If c < dmin(ω)
4 diam(ω)

, then (SSC) holds.

Proof. (a) Clearly, xi ∈ Si(E) for every i ∈ {1, .., N}. Using equation (1)
and the compactness of E we have k, l ∈ {1, .., N} and points x ∈ Sk(E)
resp. y ∈ Sl(E) with

diam(E) = ‖ x− y ‖ ≤ ‖ x− xk ‖ + ‖ xk − xl ‖ + ‖ xl − y ‖
≤ diam(Sk(E)) + diam(ω) + diam(Sl(E))

= 2c diam(E) + diam(ω).
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With c < 1
2

we deduce

diam(E) ≤ diam(ω)

1− 2c
. (8)

(b) Combining inequality (8) and c < dmin(ω)
4 diam(ω)

< 1
2

we obtain

2c diam(E) ≤ 2c

1− 2c
diam(ω)

<
dmin(ω)

2 diam(ω)− dmin(ω)
diam(ω)

≤ dmin(ω).

Thus we get Si(E) ∩ Sj(E) ⊂ B(xi, c diam(E)) ∩ B(xj, c diam(E)) = ∅ for
every i, j ∈ {1, .., N} with i 6= j.

We continue with a technical result, which is necessary for the proof of
theorem 2.7 resp. theorem 2.5 below.

Lemma 3.2. Let c < (2N2)
−1

and k ∈ N. Then (1−2ck)D

1−c(k+1)D > 1.

Proof. Clearly 0 < D = − log(N)
log(c)

< 1. Thus, the assertion is true, if

1− 2ck >
(

1− c−(k+1)
log(N)
log(c)

)− log(c)
log(N)

=
(
1−N−(k+1)

)− log(c)
log(N) . (9)

Due to c < (2N2)
−1

one gets ck <
(
2N (k+1)

)−1
for every k ∈ N. Thus we

deduce 1 − 2ck >
(
1−N−(k+1)

)
>
(
1−N−(k+1)

)− log(c)
log(N) , showing that (9) is

true.

As the next step we will prove the assertions of theorem 2.5. Recall the
definition (7) of c0 and the definition (6) of ∆. Theorem 2.7(c) states that
HD = diam(E)D if and only if

diam(E)D
∑
σ∈Γ

cDσ ≤ diam(EΓ)D (10)

for every nonempty Γ ⊂ {1, .., N}k0 . If c becomes small and if we make the
restriction, that Γ ⊂ {1, .., N}, the left hand side of (10) is approximated by

diam(ω)D card(Γ)
N

. Recall ωΓ = {xi : i ∈ Γ}. For the right hand side of (10) the
value diam(ωΓ)D is a good approximation for small c. The following proof
of theorem 2.5 will rely on these approximation values. To this end we work
with ∆ as defined in (6) resp. c0 defined in (7).
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Proof of theorem 2.5.
Consider a UIFS with ∆ < 1 if N ≥ 3 and contracting factor c < c0. Due to
c < 1

N
we deduce D < 1. Lemma 3.1 (b) ensures, that also condition (SSC)

holds for this UIFS. Fix k0 as in (3) and let Γ ⊂ {1, .., N}k0 with

HD(E) =
diam(EΓ)D∑

σ∈Γ c
D
σ

≤ diam(E)D (11)

according to theorem 2.1 (a)/(c). Now assume, that diam(EΓ) = diam(E).
Using (1) an induction argument shows E{1,..,N}k0 = E. Also by induction

and (2) we deduce
∑

σ∈{1,..,N}k0 c
D
σ = 1. If Γ 6= {1, .., N}k0 , then we obtain

HD(E) ≤ diam(E)D =
diam(E{1,..,N}k0 )D∑

σ∈{1,..,N}k0 c
D
σ

<
diam(EΓ)D∑

σ∈Γ c
D
σ

,

which is a contradiction. Hence Γ = {1, .., N}k0 and E = {E} resp. HD(E) =
diam(E)D. It remains to prove, that diam(EΓ) < diam(E) cannot happen.
We proceed indirectly. Assume that

diam(EΓ) < diam(E). (12)

Recall IΓ defined in (4). According to remark 2.3 we can assume w.l.o.g.
that card(IΓ) ≥ 2.

Case 1. {1, .., N}\IΓ 6= ∅.
Using (2) we get ∑

σ∈Γ

cDσ ≤
∑
i∈IΓ

cD =
card(IΓ)

N
. (13)

By the definition of IΓ we deduce

diam(EΓ) ≥ diam

(⋃
i∈IΓ

Si(E)

)
− 2 max

i∈IΓ
diam(Si(E))

= diam

(⋃
i∈IΓ

Si(E)

)
− 2c diam(E)

≥ diam(ωIΓ)− 2c diam(E).

Lemma 3.1 (a) implies

diam(EΓ) ≥ diam(ωIΓ)− 2c
diam(ω)

1− 2c
. (14)
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The combination of inequality (14) and (13) yields

diam(EΓ)D∑
σ∈Γ c

D
σ

≥

(
diam(ωIΓ)− 2cdiam(ω)

1−2c

)D
card(IΓ)

N

(15)

=
diam(ωIΓ)D

card(IΓ)
N

(
1− 2c

1− 2c

diam(ω)

diam(ωIΓ)

)D
≥ diam(ω)D

∆(1− 2c)D

(
1− 2c− 2c

diam(ω)

dmin(ω)

)D
.

With the definition of c0 in (7) we deduce(
1− 2c− 2c

diam(ω)

dmin(ω)

)
≥
(

1− 4c
diam(ω)

dmin(ω)

)
> ∆. (16)

Using relation (16) and lemma 3.1 (a) we obtain from inequality (15) that

diam(EΓ)D∑
σ∈Γ c

D
σ

≥ diam(E)D∆D−1 > diam(E)D. (17)

The last inequality follows from 0 < D < 1 and 0 < ∆ < 1. But (17)
contradicts (11).

Case 2. IΓ = {1, .., N}.
Let I = {i ∈ IΓ : Si(E) ⊂ EΓ}.
Case 2.1. I = IΓ = {1, .., N}.
Using (1) we get EΓ = E which is a contradiction to our assumption (12).

Case 2.2. IΓ\I 6= ∅.
Let x, y ∈ E such that diam(E) = ‖ x − y ‖. If both x and y lies in EΓ,
then diam(E) ≤ diam(EΓ), which contradicts our assumption (12). Hence,
w.l.o.g. we can assume, that x ∈ E\EΓ. Using equation (1), an i ∈ {1, .., N}
exists, with x ∈ Si(E)\EΓ. Hence i ∈ IΓ\I and (dependent from x) a ki ≥ 2
and σ(i) = (σ1(i), .., σki(i)) ∈ {1, .., N}ki exists, with

(i) x ∈ Sσ1(i) ◦ · · · ◦ Sσki (i)(E) and σ1(i) = i,

(ii) Sσ1(i) ◦ · · · ◦ Sσki (i)(E) ∩ EΓ = ∅ and

(iii) Sσ1(i) ◦ · · · ◦ Sσki−1(i)(E) ∩ EΓ 6= ∅.
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Fix j ∈ {1, .., N} with y ∈ Sj(E). If j ∈ IΓ\I, then we proceed as above
and choose kj ≥ 2 and σ(j) ∈ {1, .., N}kj with properties (i)-(iii). Otherwise,
i.e. in case of j ∈ I, we define kj = 2 and choose σ(j) = (σ1(j), σ2(j)) ∈
{1, .., N}2 such that σ1(j) = j and y ∈ Sσ1(j) ◦ Sσ2(j)(E). Thus we deduce
the existence of x′ ∈ Sσ(i)−(E) ∩ EΓ resp. y′ ∈ Sσ(j)−(E) ∩ EΓ, with

diam(E) ≤ ‖ x− x′ ‖ + ‖ x′ − y′ ‖ + ‖ y′ − y ‖
≤ diam(Sσ(i)−(E)) + diam(EΓ) + diam(Sσ(j)−(E))

≤ diam(EΓ) + 2 diam(E) max(cki−1, ckj−1)

= diam(EΓ) + 2 diam(E)cmin(ki,kj)−1.

On the other hand we deduce∑
σ∈Γ

cDσ =

{
1− cDki , if j ∈ I
1− (cDki + cDkj) , if j ∈ IΓ\I,

Due to ki ≥ 2 and kj = 2, if j ∈ I we obtain
∑

σ∈Γ c
D
σ ≤ 1 − cDmin(ki,kj).

Thus we get with k = min(ki, kj) ≥ 2 and lemma 3.2 that

diam(EΓ)D∑
σ∈Γ c

D
σ

≥ diam(E)D
(1− 2ck−1)D

1− ckD
> diam(E)D,

which contradicts (11).

Based on theorem 2.5 it is now straightforward to prove the second main
result.

Proof of theorem 2.7.
Consider a parametrised UIFS with contracting factor c and fixpoint set ω
independent of c. Using 0 < D = − log(N)

log(c)
and (6) we deduce in case of N ≥ 3

that

∆ ≤
(

diam(ω)

dmin(ω)

)D
N − 1

N
. (18)

The right hand side of (18) tends to N−1
N
∈ ]0, 1[ as c tends to zero. Hence,

fix c1 > 0, such that
(

diam(ω)
dmin(ω)

)D
N−1
N
≤ 1− 1

2N
, for every c ∈ ]0, c1]. By (18)

we have ∆(c) ≤ 1− 1
2N

< 1 for every c ∈ ]0, c1]. Now define c0 as in (7) with
∆ = ∆(c1). Because c1 does only depend on ω, also c0 is fully determined by
ω. If the contracting factor c is smaller than min(c0, c1), then the assertion
follows immediately from theorem 2.5.
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4 Examples

In this section we will give four examples, showing the applicability of our
results. Moreover we compare our results with research already done in this
area. (cf. remark 4.4). For our first example we need the following two
technical results.

Lemma 4.1. Let N ≥ 5 and[
2,
N

2
+ 1

]
3 x→ f(x) =

x

N sin( π
N

(x− 1))
.

Then, max{f(x) : x ∈
[
2, N

2
+ 1
]
} < N−1

N
.

Proof. f is differentiable on
]
2, N

2
+ 1
[

with

f ′(x) =
N sin( π

N
(x− 1))− πx cos( π

N
(x− 1))

N2 sin2( π
N

(x− 1))
. (19)

With z = π
N

(x− 1) let

g(z) = sin(z)− (z +
π

N
) cos(z).

Observe that g(π
2
) = 1 and g( π

N
) < π

N

(
1− 2 cos( π

N
)
)
< π

N

(
1− 2 cos(π

4
)
)
< 0.

Due to g(z) = cos(z)(tan(z) − (z + π
N

)) for z ∈
[
π
N
, π

2

[
we deduce with

tan′(z) > 1 for every z ∈ ]0, π
2
[ that a z0 ∈

]
π
N
, π

2

[
exists, with

(a) g(z0) = 0

(b) g(z) < 0 for every z ∈ [ π
N
, z0[

(c) g(z) > 0 for every z ∈ ]z0,
π
2
]

Using (a)-(c) and (19) we deduce, that f attains its maximum in x = 2 or
x = N

2
+1. Hence, together with sin(x) ≥ x−x3/6 for every x ≥ 0 we obtain

max{f(x) : x ∈ [2, N/2 + 1]}

= max

(
2
N

sin( π
N

)
,
N
2

+ 1

N

)

≤ max

(
2

π − 1
N2

π3

6

,
1

2
+

1

N

)
<

4

5
≤ N − 1

N
.
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Lemma 4.2. Let N ≥ 3. Then 1
4N

sin( π
N

) > 1
2N2 .

Proof. IfN = 3 resp. N = 4, then the assertion follows by direct calculations.
If N = 5, we get 1

4N
sin( π

N
) = 1

20
sin(π

5
) > 1

20
sin(π

6
) = 1

40
> 1

50
= 1

2N2 . Now
let N ≥ 6. Using the relation sin(x) ≥ 3

π
x for every x ∈ [0, π

6
] we obtain

1
4N

sin( π
N

) ≥ 1
4N

3
N

= 3
4

1
N2 >

1
2N2 .

Example 4.3 (regular N -gon).
Let N ≥ 3 and ω = {x1, .., xN} be a subset of the circle

C = {x ∈ R2 : ‖ x ‖ = 1/2}.

Assume, that ω represents the vertices of a regular N-gon. We consider
a UIFS, where each similitude Si has the fixpoint xi and contracting ratio
c ∈ ]0, 1

N
[ independent of i ∈ {1, .., N}. Every Si may also have a rotation

part, i.e. for x ∈ Rd we have

Si(x) = c Oi(x− xi) + xi (20)

with an orthonormal mapping Oi : R2 → R2. According to remark 2.6 an
I ⊂ {1, .., N} exists, with 2 ≤ card(I) ≤ N − 1 and

∆ ≤ ∆′ =
card(I)

N

diam(ω)

diam(ωI)
. (21)

For 0 ≤ ϕ1 < ϕ2 < 2π let

C[ϕ1,ϕ2[ =

{(
1

2
cos(ϕ),

1

2
sin(ϕ)

)
: ϕ ∈ [ϕ1, ϕ2[

}
.

Thus, C = C[0,2π[. We say, that ωI is dense-packed, if ϕ1(I), ϕ2(I) ∈ [0, 2π[
exist, with

(i) 0 ≤ ϕ1(I) < ϕ2(I) < 2π,

(ii) ωI ⊂ C[ϕ1(I),ϕ2(I)[ and

(iii) ω\ωI ⊂ C\C[ϕ1(I),ϕ2(I)[.

W.l.o.g. we can assume, that ωI is dense-packed, because otherwise we can
transform it into a dense-packed set without increasing the diameter. To see
this, let x, y ∈ ωI with ‖ x − y ‖ = diam(ωI). The case diam(ωI) = 1 is of

13



no interest. If diam(ωI) < 1, let ϕ1 ∈ [0, 2π[ with x = (1/2)(cos(ϕ1), sin(ϕ1))
and ϕ2 ∈ [0, 2π[ with y = (1/2)(cos(ϕ2), sin(ϕ2)). By a suitable rotation
of ωI about the origin we can assume w.l.o.g. that 0 = ϕ1 < ϕ2 < 2π.
Moreover the problem remains unchanged in case of a reflection of ωI with
respect to the abscissa. Hence we can assume w.l.o.g. that ϕ2 < π. Due to
‖ x− y ‖ = diam(ωI) < 1 we deduce ωI ⊂ C\C]ϕ2,2π−ϕ2[ with

diam(ωI) = diam(C\C]ϕ2,2π−ϕ2[). (22)

Hence ωI can be transformed into a dense-packed set ω′I ⊂ C\C]ϕ2−δ,2π−ϕ2+δ[

with a δ ∈ [0, ϕ2[. Using (22) we deduce

diam(ω′I) ≤ diam(C\C]ϕ2−δ,2π−ϕ2+δ[) ≤ diam(ωI).

Now let ωI be dense-packed. Thus we deduce

diam(ωI) ≥
{

sin
(
π
N

(card(I)− 1)
)

, if card(I) ≤ N
2

+ 1
diam(ω) , otherwise .

(23)

Using (21) one gets by a direct calculation, that ∆ ≤ N−1
N

for N = 3 and
N = 4. In case of N ≥ 5, the combination of (21) and (23) together with
diam(ω) ≤ 1 implies

∆ ≤

{
card(I)
N

(
sin
(
π
N

(card(I)− 1)
))−1

, if card(I) ≤ N
2

+ 1
card(I)
N

, otherwise .

With lemma 4.1 we obtain ∆ ≤ N−1
N

. Hence, ∆ ≤ N−1
N

for every N ≥ 3.
With dmin(ω) = sin( π

N
) and lemma 4.2 the upper bound for c, required in

theorem 2.5, is greater or equal to

min

(
(2N2)−1,

1

4
sin(

π

N
)

(
1− N − 1

N

))
= (2N2)−1.

Hence, if c < (2N2)−1 we can apply theorem 2.5 and obtain HD(E) =
diam(E)D.

Remark 4.4. For the one-dimensional dyadic homogeneous Cantor set, i.e.
d = 1 and N = 2 with uniform contracting factor c ∈ ]0, 1

2
] it is well-known,

that HD(E) = diam(E)D. Our approach (cf. theorem 2.5) is restricted to
c ∈ ]0, 1

8
[ in this case. If we consider the (general) Sierpinksi gasket, i.e.

14



d = 2 and card(ω) = N = 3, where ω consists of the vertices of an equi-
lateral triangle, then we obtain from example 4.3 that HD(E) = diam(E)D,
provided the uniform contracting factor c lies in ]0, 1

18
[. By other methods,

more adapted to the special geometry of the Sierpinski gasket, it was shown
by several authors (cf. [5, 26]) that this identity is also true, if c ∈ ]1

4
, 1

3
].

But they needed the restriction, that every similitude of the UIFS does not
contain a rotation, i.e. in (20) for every i ∈ {1, .., N} the mapping Oi is the
identical mapping. In our approach this restriction is not necessary. Also the
Sierpinski carpet, i.e. the case N = 4 in example 4.3 has been investigated.
It was first shown by Zhu and Lou [28], that HD(E) = diam(E)D holds,
if c ∈ ]0, 1/4] and the UIFS does not contain any rotation parts. See also
[4, 21] for a proof. Our results from example 4.3 show this identity only for
c ∈ ]0, 1/32[, but they allow rotation in the UIFS. In case of N = 2m with
a positive integer m, it was shown by Wu [20], that HD(E) = diam(E)D is
true, if the contracting factor c is smaller or equal to 1

N
. Again, our results

are restricted to c ∈ ]0, 1
2N2 [ but allow rotation parts in the UIFS. For odd

numbers N ≥ 5, the results in example 4.3 seem to be new.

In context with two-dimensional UIFS it is also interesting to study the
applicability of theorem 2.5 for the following example.

Example 4.5 (modified Vicsek fractal).
Chen and Yang [3] studied the Hausdorff measure of another two-dimensional
fractal set. They considered the UIFS consisting of the fixed points ω =
{x1, .., x5} with x1 = (0, 0), x2 = (1, 0), x3 = (1, 1), x4 = (0, 1) and x5 =
(1/2, 1/2). If the UIFS contains no rotation parts and the contracting factor
is lower or equal to 1

N
, they have proved, that HD(E) = diam(E)D. An easy

calculation shows ∆′ = 3
√

2
5

< 1, resp. dmin(ω) = 1
2

√
2 and diam(ω) =

√
2.

Thus we deduce from theorem 2.5, that above equality for HD(E) holds, if

0 < c < 1
8

(
1− 3

√
2

5

)
= 0.0189.. which is, in this respect, weaker than the

result of Chen and Yang, but we allow, that the UIFS can have rotation
parts.

Our third example illustrates, that theorem 2.7 does not hold, if the
set ω of fixed points of the (parametrised) UIFS may also depend on the
contracting parameter c.

Example 4.6. Let d = 2 and N = 3. For x > 0 and α > 0 let x1 = (0, 0),
x2 = (x, 0) resp. x3 = (0, x

√
α). With the uniform contracting factor c =

15



1
(1+α)

we consider the UIFS consisting of the similitudes Si(·) = c(·−xi) +xi

for i ∈ {1, 2, 3}. Let Γ = {1, 2}. Clearly, diam(ω) = x
√

1 + α. We obtain∑
i∈Γ

diam(Si(E))D = 2cD diam(E)D

≥ 2cD diam(ω)D = 2cD
(
x
√

1 + α
)D

. (24)

On the other hand, Lemma 3.1(a) implies

diam (EΓ)D ≤ (x+ 2c diam(E))D <

(
x+

2c

1− 2c
x
√

1 + α

)D
. (25)

From (24), (25) and cD = 1
3

we deduce

diam (EΓ)D∑
i∈Γ diam(Si(E))D

<
3

2

(
1√

1 + α
+

2c

1− 2c

)D
. (26)

Let us assume, that α ≥ 3. By c = 1
1+α

we get 2c
1−2c
≤ 4c = 4

1+α
. Hence, the

right hand side of (26) is smaller or equal to

3

2

(
1√

1 + α
+

4

1 + α

) log(3)
log(1+α)

=

√
3

2

(
1 +

4√
1 + α

) log(3)
log(1+α)

, (27)

which tends to
√

3
2
< 1 as α→∞. Especially if α ≥ 40, it is easy to calculate,

that the right hand side of (27) is smaller than 1, yielding with (26) that

diam (EΓ)D∑
i∈Γ diam(Si(E))D

< 1.

Using Γ = {1, 2} ⊂ {1, .., N}k0 with k0 as in (3) we deduce with theorem
2.7(c) that

diam(E)D >
diam (EΓ)D∑

i∈Γ c
D
i

≥ HD(E).

Moreover,

∆ ≥ 2

3

(√
1 + α

) log(3)
log(1+α)

=
2√
3
> 1.
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Remark 4.7. Example 4.6 shows, that ∆ < 1 cannot be dropped in theorem
2.5, i.e. theorem 2.5 becomes wrong, if we only require c0 = (2N2)−1. If
∆ < 1 holds, the upper bound for the contracting factor, required in theorem
2.5, will certainly not be optimal at all. It is natural to ask, if we can weaken
or drop this boundary condition and require only ∆ < 1. Unfortunately we
cannot do so. This follows from the work for the Sierpinski gasket (cf. [2]
and the references therein). Using resp. slightly adapting the methods in [2],
it is easy to show, that HD(E) < (diam(E))D and (SSC) is satisfied, if the
contracting factor c is smaller but close enough to 1

2
. Clearly, ∆ = 2

3
< 1 is

still satisfied in this situation.

We finish this section with a higher dimensional example.

Example 4.8. Let d ≥ 2 and ω be the vertices of the d−dimensional unit
cube [0, 1]d. Consider a parametrised UIFS with ω as fixpoint set and con-
tracting factor c. By theorem 2.7 a constant b0 = b0(ω) > 0 exists, such that
HD(E) = diam(E)D if c ∈ ]0, b0[. If the UIFS does not contain any rotation
parts, it was shown by Zhou et.al. [25] that b0 ≥ 2−d.

5 Concluding remarks

Recall E as defined in (5). It would be of general interest, which sets E
consists of, resp. which cardinality E has. A possible answer to this question
will likely depend on the special structure of the IFS, especially if it contains
rotation parts. Moreover one could ask, what implications the equation

HD(E) = diam(E)D (28)

does have. Note, that this equality does not imply condition (SSC). If we
e.g. consider the unit interval [0, 1] as the invariant set of the UIFS with
S1(x) = 1

2
x and S2(x) = 1

2
x+ 1

2
for every x ∈ R, then this UIFS satisfies (28)

but not condition (SSC). It would be interesting to know, if (28) implies,
that E has finite cardinality.

The applicability of theorem 2.5 relies on the fact ∆ < 1. This is ensured
by ∆′ < 1 (cf. remark 2.6). In practice, to verify ∆′ < 1 one has to evaluate
all appearing combinations of subsets ωI of ω with 2 ≤ card(I) ≤ N − 1.
Thus we have to compute

N−1∑
k=2

(
N

k

)
= 2N −N − 2
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combinations. Clearly, this becomes quite hard if N becomes large, unless
ω has a specific geometric structure (cf. example 4.3). But also in highly
symmetric cases it could be difficult to check, if ∆′ < 1. E.g. this is the case
in example 4.8.

Let us consider a parametrised UIFS. Note that the attractor E and the
Hausdorff dimension D depends on the contracting factor c. Let

M1 = {c ∈ ]0, 1[: UIFS satisfies SSC for every c′ ∈ ]0, c]}

and let

∅ 6= M2 = {c ∈M1 : HD(E) = diam(E)D for every c′ ∈ ]0, c]}.

In view of remark 4.7 it is natural to ask about the determination of d0 =
supM2. Note that d0 ∈ M2 by reasons of continuity (cf. [13]). As already
stated above, also here a possible answer will likely depend on the geometry
of the UIFS.

Finally it also remains open to find UIFS, if existing, satisfying (28) and
D > 1.
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