70 research outputs found

    Electroplastic effect in magnesium alloy AZ31 using supercapacitors

    Get PDF
    In this work, a pulsed electric current is applied to a specimen simultaneously with a quasi-static uniaxial tensile load. To do so a short-time current pulse generator, inducing supercapacitors was designed and manufactured. The experiments with low operating voltage were performed at different electric current pulse period and frequency. The electroplasticity of AZ31 magnesium alloy under a pulsed electric current is investigated experimentally. Appropriate control of current parameters makes it possible to change not only the stress levels in the process, but also achieved plastic strain values. The result of the present study with low operating voltage is expected to provide a basis to develop advanced metal forming processes using electroplasticity

    Electroplastic effect in magnesium alloy AZ31 using supercapacitors

    Get PDF
    In this work, a pulsed electric current is applied to a specimen simultaneously with a quasi-static uniaxial tensile load. To do so a short-time current pulse generator, inducing supercapacitors was designed and manufactured. The experiments with low operating voltage were performed at different electric current pulse period and frequency. The electroplasticity of AZ31 magnesium alloy under a pulsed electric current is investigated experimentally. Appropriate control of current parameters makes it possible to change not only the stress levels in the process, but also achieved plastic strain values. The result of the present study with low operating voltage is expected to provide a basis to develop advanced metal forming processes using electroplasticity

    Glutathione <em>S</em>-transferase P1 (<em>GSTP1</em>) directly influences platinum drug chemosensitivity in ovarian tumour cell lines

    Get PDF
    BACKGROUND: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. METHODS: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. RESULTS: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC(50), respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. CONCLUSIONS: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients

    Quantitative Phosphoproteomics of CXCL12 (SDF-1) Signaling

    Get PDF
    CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation

    Lipid (per) oxidation in mitochondria:an emerging target in the ageing process?

    Get PDF
    Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease

    Cell division: control of the chromosomal passenger complex in time and space

    Get PDF

    Plastic Deformation Zone in Electromagnetic Cutting

    No full text
    This paper presents the application of the electromagnetic field as a tool for metal sheet cutting. The experiments showed that one can easily adapt the conventional cutting equipment to the electromagnetic cutting technology and thereby eliminate the mechanical work of the punch and the press. Two methods exploiting the electromagnetic field as the tool for cutting sheet metal were used. In one of the methods the cutting element was a die while in the other method a punch was used for cutting. Owing to the high quality surface of the cut obtained by each of the methods the cutting process does not entail additional costs for removing burrs. The shape of the surface of the cut is different than the one obtained by traditional blanking – no zones characteristic of the latter are present here. In the case of both materials, the rollover of the sheet surface is much larger and longer than in the conventional method. In comparison with the conventional method, the electromagnetic machining technology ensures high quality of the surface of the cut and can be successfully used in the industry

    Electroplastic Effect of High Manganese Austenitic Steel

    No full text
    The article presents the results of the investigations performed on high manganese austenitic steel which underwent the test of uniaxial tension, with the application of electric current impulses. The application of low voltage impulse alternating current of high intensity during the plastic deformation of the examined steel caused the occurrence of the electroplastic effect, which changed the shape of the stress-strain curve. A drop of flow stress and elongation of the tested material was observed in the case of the application of electric current impulses, in respect of the material stretched without such impulses and stretched at an elevated temperature. The analysis of the morphology of the fractures showed differences between the samples tested under the particular conditions. An analysis of the alloy’s microstructure was also performed under different conditions. The application of electric current impulses can have a significant influence on the reduction of the forces in the plastic forming processes for this type of steel

    Micro metal forming

    No full text
    Ciągły wzrost popytu na miniaturowe części, powoduje szybki rozwój metod mikroformowania z zastosowaniem obróbki plastycznej. W artykule opisano proces mikroformowania metalowych części, problemy związane ze zmniejszeniem skali obrabianych wyrobów, a także zjawiska zachodzące podczas tego procesu w skali mikro. Przedstawiono przegląd głównych procesów obróbki plastycznej stosowanych w mikroformowaniu w tym kształtowanie cienkich blach i kształtowanie brył. Omówiono także zagadnienia związane z produkcją mikromaszyn.Increasing demand on miniature parts causes the great growth of microforming methods using metal forming. This paper gives the review of microforming process, problems associated with miniaturization of metal parts and effects which appear during the micro metal forming. Forming technologies like micro massive forming and micro sheet metal forming are described in this paper. The problem of micro machines is mentioned here

    Magnetic measurements of sheet metal forming processes

    No full text
    W materiałach ferromagnetycznych występuje zjawisko odwrotnej magnetostrykcji zwane inaczej efektem Villariego. Bazując na tym efekcie zaprezentowano metodę wyznaczania utraty stateczności materiału blachy. Zastosowano sensor pola magnetycznego do analizy momentu powstawania zlokalizowanej utraty stateczności dla procesów tłoczenia blach. Praca pokazuje szerokie eksperymentalne zastosowanie magnetorezystora jako sensora do określania różnych zjawisk, występujących w operacjach tłoczenia blachy.For ferromagnetic materials the inverse magnetostriction effect is comonly known as Villari effect. Based on this effect, the method of determination localized necking is presented. Sensor of magnetic field was used in the analysis of moment localized necking for deep drawing. This work demonstrated the wide experimental posibilities of the magnetoresistor sensor as a tool for investigation of different mechanical properties for stamping operations
    corecore