32,073 research outputs found

    Single-Shot Refinement Neural Network for Object Detection

    Full text link
    For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and maintains comparable efficiency of one-stage methods. RefineDet consists of two inter-connected modules, namely, the anchor refinement module and the object detection module. Specifically, the former aims to (1) filter out negative anchors to reduce search space for the classifier, and (2) coarsely adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor. The latter module takes the refined anchors as the input from the former to further improve the regression and predict multi-class label. Meanwhile, we design a transfer connection block to transfer the features in the anchor refinement module to predict locations, sizes and class labels of objects in the object detection module. The multi-task loss function enables us to train the whole network in an end-to-end way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO demonstrate that RefineDet achieves state-of-the-art detection accuracy with high efficiency. Code is available at https://github.com/sfzhang15/RefineDetComment: 14 pages, 7 figures, 7 table

    Quantum State Transfer Characterized by Mode Entanglement

    Full text link
    We study the quantum state transfer (QST) of a class of tight-bonding Bloch electron systems with mirror symmetry by considering the mode entanglement. Some rigorous results are obtained to reveal the intrinsic relationship between the fidelity of QST and the mirror mode concurrence (MMC), which is defined to measure the mode entanglement with a certain spatial symmetry and is just the overlap of a proper wave function with its mirror image. A complementarity is discovered as the maximum fidelity is accompanied by a minimum of MMC. And at the instant, which is just half of the characteristic time required to accomplish a perfect QST, the MMC can reach its maximum value one. A large class of perfect QST models with a certain spectrum structure are discovered to support our analytical results.Comment: 6 pages, 3 figures. to appear in PR

    Charge-impurity-induced Majorana fermions in topological superconductors

    Get PDF
    We study numerically Majorana fermions (MFs) induced by a charged impurity in topological superconductors. It is revealed from the relevant Bogoliubov-de Gennes equations that (i) for quasi-one dimensional systems, a pair of MFs are bounded at the two sides of one charge impurity and well separated; and (ii) for a two dimensional square lattice, the charged-impurity-induced MFs are similar to the known pair of vortex-induced MFs, in which one MF is bounded by the impurity while the other appears at the boundary. Moreover, the corresponding local density of states is explored, demonstrating that the presence of MF states may be tested experimentally.Comment: 5 pages, 5 figure

    Superconductivity in half-Heusler compound TbPdBi

    Full text link
    We have studied the half-Heusler compound TbPdBi through resistivity, magnetization, Hall effect and heat capacity measurements. A semimetal behavior is observed in its normal state transport properties, which is characterized by a large negative magnetoresistance below 100 K. Notably, we find the coexistence of superconductivity and antiferromagnetism in this compound. The superconducting transition appears at 1.7 K, while the antiferromagnetic phase transition takes place at 5.5 K. The upper critical field Hc2H_{c2} shows an unusual linear temperature dependence, implying unconventional superconductivity. Moreover, when the superconductivity is suppressed by magnetic field, its resistivity shows plateau behavior, a signature often seen in topological insulators/semimetals. These findings establish TbPdBi as a platform for study of the interplay between superconductivity, magnetism and non-trivial band topology.Comment: 5 pages, 4 figure

    Equation of motion for multiqubit entanglement in multiple independent noisy channels

    Full text link
    We investigate the possibility and conditions to factorize the entanglement evolution of a multiqubit system passing through multi-sided noisy channels. By means of a lower bound of concurrence (LBC) as entanglement measure, we derive an explicit formula of LBC evolution of the N-qubit generalized Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels, based on which two kinds of factorizing conditions for the LBC evolution are presented. In this case, the time-dependent LBC can be determined by a product of initial LBC of the system and the LBC evolution of a maximally entangled GGHZ state under the same multi-sided noisy channels. We analyze the realistic situations where these two kinds of factorizing conditions can be satisfied. In addition, we also discuss the dependence of entanglement robustness on the number of the qubits and that of the noisy channels.Comment: 14 page

    Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction

    Full text link
    The recently observed X(3872) resonance, which is difficult to be assigned a conventional ccˉc\bar{c} charmonium state in the quark model, may be interpreted as a molecular state. Such a molecular state is a hidden flavor four quark state because of its charmonium-like quantum numbers. The s-channel one gluon exchange is an interaction which only acts in the hidden flavor multi-quark system. In this paper, we will study the X(3872) and other similiar hidden flavor molecular states in a quark model by taking into account of the s-channel one gluon exchange interaction

    Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2

    Full text link
    We performed an extensive investigation on the correlations among superconductivity, structural instability and band filling in Nb1-xB2 materials. Structural measurements reveal that a notable phase transformation occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with the minimum total density of states (DOS) as demonstrated by the first-principles calculations. Superconductivity in Nb1-xB2 generally becomes visible in the Nb-deficient materials with x=0.2. Electron energy-loss spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence of a chemical shift arising from the structural transformation. Our systematical experimental results in combination with theoretical analysis suggest that the emergence of hole states in the sigma-bands plays an important role for understanding the superconductivity and structural transition in Nb1-xB2.Comment: 16 pages, 4 figure
    corecore