32,073 research outputs found
Single-Shot Refinement Neural Network for Object Detection
For object detection, the two-stage approach (e.g., Faster R-CNN) has been
achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has
the advantage of high efficiency. To inherit the merits of both while
overcoming their disadvantages, in this paper, we propose a novel single-shot
based detector, called RefineDet, that achieves better accuracy than two-stage
methods and maintains comparable efficiency of one-stage methods. RefineDet
consists of two inter-connected modules, namely, the anchor refinement module
and the object detection module. Specifically, the former aims to (1) filter
out negative anchors to reduce search space for the classifier, and (2)
coarsely adjust the locations and sizes of anchors to provide better
initialization for the subsequent regressor. The latter module takes the
refined anchors as the input from the former to further improve the regression
and predict multi-class label. Meanwhile, we design a transfer connection block
to transfer the features in the anchor refinement module to predict locations,
sizes and class labels of objects in the object detection module. The
multi-task loss function enables us to train the whole network in an end-to-end
way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO
demonstrate that RefineDet achieves state-of-the-art detection accuracy with
high efficiency. Code is available at https://github.com/sfzhang15/RefineDetComment: 14 pages, 7 figures, 7 table
Quantum State Transfer Characterized by Mode Entanglement
We study the quantum state transfer (QST) of a class of tight-bonding Bloch
electron systems with mirror symmetry by considering the mode entanglement.
Some rigorous results are obtained to reveal the intrinsic relationship between
the fidelity of QST and the mirror mode concurrence (MMC), which is defined to
measure the mode entanglement with a certain spatial symmetry and is just the
overlap of a proper wave function with its mirror image. A complementarity is
discovered as the maximum fidelity is accompanied by a minimum of MMC. And at
the instant, which is just half of the characteristic time required to
accomplish a perfect QST, the MMC can reach its maximum value one. A large
class of perfect QST models with a certain spectrum structure are discovered to
support our analytical results.Comment: 6 pages, 3 figures. to appear in PR
Charge-impurity-induced Majorana fermions in topological superconductors
We study numerically Majorana fermions (MFs) induced by a charged impurity in
topological superconductors. It is revealed from the relevant Bogoliubov-de
Gennes equations that (i) for quasi-one dimensional systems, a pair of MFs are
bounded at the two sides of one charge impurity and well separated; and (ii)
for a two dimensional square lattice, the charged-impurity-induced MFs are
similar to the known pair of vortex-induced MFs, in which one MF is bounded by
the impurity while the other appears at the boundary. Moreover, the
corresponding local density of states is explored, demonstrating that the
presence of MF states may be tested experimentally.Comment: 5 pages, 5 figure
Superconductivity in half-Heusler compound TbPdBi
We have studied the half-Heusler compound TbPdBi through resistivity,
magnetization, Hall effect and heat capacity measurements. A semimetal behavior
is observed in its normal state transport properties, which is characterized by
a large negative magnetoresistance below 100 K. Notably, we find the
coexistence of superconductivity and antiferromagnetism in this compound. The
superconducting transition appears at 1.7 K, while the antiferromagnetic phase
transition takes place at 5.5 K. The upper critical field shows an
unusual linear temperature dependence, implying unconventional
superconductivity. Moreover, when the superconductivity is suppressed by
magnetic field, its resistivity shows plateau behavior, a signature often seen
in topological insulators/semimetals. These findings establish TbPdBi as a
platform for study of the interplay between superconductivity, magnetism and
non-trivial band topology.Comment: 5 pages, 4 figure
Equation of motion for multiqubit entanglement in multiple independent noisy channels
We investigate the possibility and conditions to factorize the entanglement
evolution of a multiqubit system passing through multi-sided noisy channels. By
means of a lower bound of concurrence (LBC) as entanglement measure, we derive
an explicit formula of LBC evolution of the N-qubit generalized
Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels,
based on which two kinds of factorizing conditions for the LBC evolution are
presented. In this case, the time-dependent LBC can be determined by a product
of initial LBC of the system and the LBC evolution of a maximally entangled
GGHZ state under the same multi-sided noisy channels. We analyze the realistic
situations where these two kinds of factorizing conditions can be satisfied. In
addition, we also discuss the dependence of entanglement robustness on the
number of the qubits and that of the noisy channels.Comment: 14 page
Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction
The recently observed X(3872) resonance, which is difficult to be assigned a
conventional charmonium state in the quark model, may be interpreted
as a molecular state. Such a molecular state is a hidden flavor four quark
state because of its charmonium-like quantum numbers. The s-channel one gluon
exchange is an interaction which only acts in the hidden flavor multi-quark
system. In this paper, we will study the X(3872) and other similiar hidden
flavor molecular states in a quark model by taking into account of the
s-channel one gluon exchange interaction
Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2
We performed an extensive investigation on the correlations among
superconductivity, structural instability and band filling in Nb1-xB2
materials. Structural measurements reveal that a notable phase transformation
occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with
the minimum total density of states (DOS) as demonstrated by the
first-principles calculations. Superconductivity in Nb1-xB2 generally becomes
visible in the Nb-deficient materials with x=0.2. Electron energy-loss
spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence
of a chemical shift arising from the structural transformation. Our
systematical experimental results in combination with theoretical analysis
suggest that the emergence of hole states in the sigma-bands plays an important
role for understanding the superconductivity and structural transition in
Nb1-xB2.Comment: 16 pages, 4 figure
- …
