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We study numerically Majorana fermions (MFs) induced by a charged impurity in topological superconductors.
It is revealed from the relevant Bogoliubov–de Gennes equations that (i) for quasi-one-dimensional systems, a pair
of MFs are bounded at the two sides of one charged impurity and are well-separated; and (ii) for a two-dimensional
square lattice, the charged-impurity-induced MFs are similar to the known pair of vortex-induced MFs, in which
one MF is bounded by the impurity while the other appears at the boundary. Moreover, the corresponding local
density of states is explored, demonstrating that the presence of MF states may be tested experimentally.
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I. INTRODUCTION

Topological superconductors have recently attracted a
tremendous amount of attention due to their exotic properties
and potential applications [1]. There are a number of candidate
systems for realizing topological superconductors. One well-
known example is the chiral p + ip superconductor [2,3],
although its experimental realization is a great challenge. A
more realistic model may be the superconducting systems
realized in the spin-orbital coupled s-wave, such as the
CuxBe2Se3 material [4–7]. Besides, topological supercon-
ductors may also be fabricated in heterostructure systems,
including a semiconductor with the spin-orbital interaction
and a conventional s-wave superconductor [3,8–15]. Another
promising candidate is topological superfluid, which may also
be simulated by cold atom systems, noting that both s-wave
pairing and spin-orbital coupling have been implemented in
cold atoms [16–20].

As is known, one of the most prominent features of a
topological superconductor lies in the fact that topologically
nontrivial Majorana fermions (MFs) may emerge in the
system, which is relevant to the non-Abelian statistics and
has potential applications in topological quantum computa-
tion [21]. It was indicated that the MFs may exist in the
vortex cores of a chiral p + ip superconductor [2] and they
should obey non-Abelian statistics [22]. Later there are a
number of theoretical proposals for realizing and probing the
MFs in various topological superconducting systems [23–33].
Although significant experimental efforts have been made on
MFs [10–15,34], there is as of yet no unambiguous evidence
for the MFs and no direct demonstration of their non-Abelian
statistics.

On the other hand, the impurity effect has been an impor-
tant issue in the study of unconventional superconductivity
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[35]. For a d-wave superconducting system, one remarkable
result is the existence of the midgap bound state near
the impurity site, while such a bound state does not exist
for conventional s-wave superconductors. For a topological
superconducting system, the existence of the midgap state
is of great interest and may be related to the MF modes.
Thus the impurity effect is also of interest, and it has
attracted attention [36–42]. Contrary to the impurity effect
of a topologically trivial s-wave superconductor, it has been
reported that in-gap bound states may be induced by a
nonmagnetic impurity [36–42]. The midgap state exists in
a pure one-dimensional system [37] or in a two-dimensional
system, but considering a typical line-type potential [38,39].
In general, however, for two- and three-dimensional systems,
in-gap bound states appear at finite energy, and no zero-energy
states exist near the impurity [38,40,41]. As a result, no
MFs are actually induced by a single impurity for two- or
three-dimensional system. Notably, previous studies on the
single impurity effect have focused merely on the single neutral
nonmagnetic in-plane impurity, in which the impurity term
was treated theoretically as an additional potential on the
impurity site. In contrast, we investigate here the effect of an
off-plane charged impurity in a topological superconductor,
with the impurity term being simulated by an additional
Coulomb potential, noting that the charged-impurity effect
has been studied intensively for some condensed-matter
systems, such as high-Tc superconductors [43] and graphene
layers [44]. More interestingly, we find that the charged-
impurity effect is significantly different from that of the
neutral nonmagnetic in-plane impurity, namely for a charged
impurity, MFs indeed exist in the topological superconducting
system. It is revealed that a pair of MFs are bounded
by the charged impurity. As a result, one may manipulate
the MFs by controlling the charged impurities, such that
they may have potential applications in topological quantum
computation.

This article is organized as follows. In Sec. II, we introduce
the model and work out the formalism. In Sec. III, we perform
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numerical calculations and discuss the obtained results.
Finally, we give a brief summary in Sec. IV.

II. HAMILTONIAN AND FORMALISM

We start from a model Hamiltonian that includes the spin-
orbital coupling, the Zeeman field, the s-wave pairing term,
and an additional charged-impurity term, which is given by

H = Ht + H� + HSO, (1)

where Ht includes the hopping term, the on-site potential, and
the Zeeman field, expressed by

Ht = −t
∑
〈ij〉

(c†iσ cjσ + H.c.) +
∑

iσ

(Ui − μ + σh)c†iσ ciσ . (2)

〈ij〉 represents the nearest-neighbor sites, h is the Zeeman
field, and σ takes “+” for the spin-up state and “−” for the
spin-down state. Ui is a site-dependent potential induced by
the charged impurity. μ is the chemical potential.

H� is the pairing term, expressed by

H� =
∑

i

(�iic
†
i↑c

†
i↓ + H.c.), (3)

and HSO is the spin-orbital interaction, with

HSO =
∑

i

(iλc
†
i↑ci+x̂↓ + iλc

†
i↓ci+x̂↑ + H.c.

+ λc
†
i↑ci+ŷ↓ − λc

†
i↓ci+ŷ↑ + H.c.). (4)

The above Hamiltonian can be diagonalized by solving the
Bogoliubov–de Gennes (BdG) equations,

∑
j

⎛
⎜⎜⎜⎝

Hij↑↑ Hij↑↓ �jj 0

Hij↓↑ Hij↓↓ 0 −�jj

�∗
jj 0 −Hij↓↓ −H ∗

ij↓↑
0 −�∗

jj −H ∗
ij↑↓ −Hij↑↑

⎞
⎟⎟⎟⎠ �

η

j = Eη�
η

j , (5)

where �
η

j = (uη

j↑,u
η

j↓,v
η

j↓,v
η

j↑)T. Hijσσ and Hijσ σ̄ (σ �= σ̄ ) are
obtained from Ht and HSO, respectively. The site-dependent
order parameter �jj is calculated self-consistently,

�jj = V

2

∑
η

u
η

j↑v
η∗
j↓ tanh

(
Eη

2KBT

)
, (6)

with V being the pairing strength.
The on-site particle number ni is expressed as

ni =
∑
ησ

∣∣uη
iσ

∣∣2
f (Eη), (7)

with f (Eη) the Fermi distribution function.
The local density of states (LDOS) can be calculated as

ρi(ω) =
∑

η

[∣∣uη

i↑
∣∣2

δ(Eη − ω) + ∣∣vη

i↓
∣∣2

δ(Eη + ω)
]
, (8)

where the delta function δ(E) is taken as δ = 
/[π (E2 + 
2)],
with the quasiparticle damping 
 = 0.01.

In the present work, we consider an off-plane charged impu-
rity carrying the negative electric charge −Ze, as sketched in
Fig. 1. A repulsive potential Ui = U0/

√
(Ri − r0)2 + (d/a)2

is induced by the impurity, with U0 = Ze2/(4πε0a) (a is

FIG. 1. (Color online) Schematic illustration of an off-plane
charged impurity, with d being the distance between the plane and
the impurity.

the lattice constant). In the following calculations, we set
Z = 1 and a = 4 Å. U0 is estimated to be about 3.6 eV.
We use the hopping constant t to be the energy unit, and
we set U0 = 6. The distance d plays a key role in controlling
the effective scope of the Coulomb potential. As d tends to
zero, the potential at r0 approaches infinity. In this case, the
charged impurity is equivalent to a unitary in-plane neutral
nonmagnetic impurity [45]. As d increases, the long-range
Coulomb interactions take effect. In the present work, we
set d = a for illustration. Generally, the MF modes are quite
robust for larger U0 and d. The numerical calculations are
performed on the quasi-one-dimensional system with lattice
size 400 × 3, and on the two-dimensional system with lattice
size 48 × 48. Note that for both systems, we have verified
numerically that no zero-energy state exists for a single-point-
type nonmagnetic impurity (not presented here).

The other parameters and the corresponding phase diagram
in the absence of impurity have already been discussed in
some detail [46]. Here they are set as μ = −4, λ = 0.5, h =
0.6, and V = 5, such that the system is in the topological
superconducting phase. We have also checked numerically
that our main results presented below are not sensitive to the
parameters in the topological phase region. To see the origin
of the topological feature more clearly, we transform the bare
Hamiltonian into momentum space, with the two renormalized
normal state energy bands, E±, expressed as

E± = εk ±
√

h2 + 4λ2(sin2 kx + sin2 ky). (9)

Here, εk = −2t(cos kx + cos ky) − μ. We plot the above band
structure with μ = 0 in Fig. 2. Since these two bands are both
the superposition of the spin-up and spin-down electrons, with
an additional s-wave pairing, the Hamiltonian is equivalent
to a two-band p ± ip-pairing superconducting system with
opposite chirality, which is usually a topologically trivial
superconductor. On the other hand, as is seen in Fig. 2, the two
energy bands are separated by the Zeeman field with an energy
gap 2h at the (0,0) point. If we set the chemical potential μ to
be inside the gap (e.g., for the case of μ = −4), then the upper
band is unoccupied and only the lower band takes effect. In
this case, the system is topologically nontrivial and equivalent
to a one-band p + ip superconducting system.

III. RESULTS AND DISCUSSION

We now present the numerical results for a quasi-one-
dimensional system. The periodic boundary condition is
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FIG. 2. (Color online) The renormalized normal state band dis-
persion in momentum space [Eq. (6)].

considered for both the x and y directions. For the quasi-
one-dimensional lattice, the y dependence of the physical
quantities is not important. Thus we just consider here the
x dependence of the physical quantities, defined as A(x) =
1/Ny

∑
y A(x,y). Figure 3(a) displays the self-consistent

results of the superconducting gap and the site-dependent
particle number. As is seen, both the superconducting gap
and the on-site particle number are suppressed to zero near the
impurity site. The energy gap increases and tends to be uniform
away from the impurity. As a result, two gap edges at the sites
x = 200 ± 10 are induced by the charged impurity. This result
is consistent with the energy band dispersion shown in Fig. 2
. As is seen, the minimum normal state energy is −4.6. Thus
the particle number and the pairing gap will be suppressed to
zero as −μ + Ui > 4.6, which yields the gap edges about 10
lattice sizes away from the impurity.

The existence of the gap edge is important for the MFs. We
now demonstrate numerically the existence of the MF states.
The information of the MFs can be obtained by diagonalizing
the BdG equations [Eq. (2)]. The eigenvalues of the BdG

FIG. 3. (Color online) The numerical results for a 400 × 3 lattice.
(a) The self-consistent results of the order parameter � and the site-
dependent particle number n. (b) The eigenvalues of the Hamiltonian.
(c) The spatial distributions of the two MFs. (d) The intensity plot of
the LDOS at zero energy.

Hamiltonian are plotted in Fig. 3(b). As is seen, two zero-
energy eigenvalues are revealed by the numerical results. They
are protected by an energy gap about 0.1. As is known, the two
eigenvalues ±E come from one physical particle, expressed as
C and C†, which are eigenvectors of the BdG Hamiltonian. For
the case of E = 0, one physical particle can be separated as two
MFs. The particle operators of the two MFs can be obtained by
γ1 = (C + C†)/

√
2 and γ2 = i(C† − C)/

√
2. Then the spatial

distribution of the MFs, γ1,2, can be studied numerically. As is
presented in Figs. 3(a) and 3(c), a pair of MFs are separated by
the impurity and located near the two gap edges. This feature
of well separated and localized MFs is rather important for
the manipulation of them, which can be controlled by varying
the position and scattering potential of the impurity, having
potential applications in topological quantum computing [21].

The existence of the zero mode can be examined through
the LDOS spectra. The intensity of the zero-energy LDOS
at different positions is plotted in Fig. 3(d). As is seen, there
exists a sharp peak at the sites x = 200 ± 10. It is clear that the
zero-energy LDOS is qualitatively the same with the spatial
distribution of the two MFs. The zero-bias peak of the LDOS
can be tested by scanning tunneling microscope experiments.
Thus the indication of MFs may be tested experimentally.

Let us turn to present the numerical results of a two-
dimensional lattice with a charged impurity located at r0 =
(24,24). The intensity plot of the order parameter magnitude
and the on-site particle number with the open boundary
condition are displayed in Figs. 4(a) and 4(b), respectively.
Their two-dimensional cuts (along y = 24) are plotted in
Fig. 4(c). As is seen, both the order-parameter magnitude and
the particle number are near zero as |Ri − r0| < 10. This result
is similar to the case of a quasi-one-dimensional system and
can be understood through the band structure shown in Fig. 2.
As |Ri − r0| > 10, the effective on-site potentials cross the

FIG. 4. (Color online) The numerical results for a 48 × 48 lattice.
(a) The intensity plot of the order parameter. (b) The intensity plot of
the site-dependent particle number. (c) The two-dimensional cuts of
the order parameter and the particle number along x = 24. (d) The
eigenvalues of the Hamiltonian in the presence of a charge-impurity.
Inset of (d): The eigenvalues of the Hamiltonian with the periodic
boundary and without the impurity.
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FIG. 5. (Color online) The numerical results for the 48 × 48
lattice. (a) The spatial distribution of γ1. (b) The spatial distribution
of γ2. (c) The intensity plot of the zero-energy LDOS. (d) The
two-dimensional cuts of panels (a)–(c) along y = 24.

lower energy band, and thus the on-site particle number and
the gap magnitude increase. As a result, the gap edges at
the sites |Ri − r0| = 10 form. An edge state should exist
and the MFs may exist near the gap edges. The eigenvalues
of the two-dimensional Hamiltonian are plotted in Fig. 4(d).
We also plot the eigenvalues for the case of the uniform pairing
states with periodic boundary in the inset of Fig. 4(d). For the
two-dimensional lattice in the presence of the boundaries, it is
expected that an edge state crossing zero energy should exist.
In the uniform superconducting state, an energy gap about 0.2
is seen clearly. In the presence of a charged impurity, as seen
in Fig. 4(d), the edge state crossing the zero energy exists,
protected by a bulk energy gap about 0.2. Two zero-energy
eigenvalues can be seen clearly, related to the MF modes near
the gap edges.

Similar to the case of the quasi-one-dimensional lattice, the
two MFs can be studied numerically from the eigenvectors
of the zero eigenvalues. The numerical results of the spatial
distribution of the two MF states are presented in Figs. 5(a)
and 5(b). We also plotted the zero-energy LDOS in Fig. 5(c) to
disclose a possible experimental observation of the existence
and distribution of the zero mode. Their two-dimensional cuts
along the line y = 24 are plotted in Fig. 5(d).

As is shown in Figs. 5(a) and 5(b), the two well-separated
MFs are identified numerically. The spatial distribution of
γ1 forms a circle with a radius of about 10 lattice sizes.
Thus it appears near the superconductor-insulator boundary.
Another MF γ2 appears at the system boundary. These
results are qualitatively the same as those in the case of
the vortex-induced MFs in topological superconductors [2].
In this sense, here the charged impurity may be viewed
as an artificially created vortex. One may manipulate the
MFs through controlling the charged impurity. Similar to the
case of the quasi-one-dimensional lattice, the zero mode can
be detected experimentally through the zero-energy LDOS.
The intensity plot of the zero-energy LDOS is displayed in
Fig. 5(d). Here the spectrum is qualitatively consistent with
the distributions of the two MF states. As a result, a signature

of MFs may also be obtained through the LDOS spectra for
the two-dimensional lattice system.

Experimentally, the LDOS spectra are measured via scan-
ning tunneling spectroscopy. Several groups have recently re-
ported a zero-bias peak in various systems [12–15], providing
a possible indication of the existence of MFs, although it is
still debatable. A number of theoretical proposals have been
suggested so far [47–51]. However, detecting the MFs in a
more direct way is rather challenging, and there has been
no direct and convincing experimental evidence that confirms
the existence of the MFs. We think that such evidence may
be provided through probing the non-Abelian statistics of the
quasiparticles. In the present work, the MFs are controllable
in principle, and thus the exotic non-Abelian statistics may
be demonstrated through coupling the system to a “quantum
dot” [52]. In addition, if the position of the charged impurity
is well-controlled, the braiding of the particles can be done
directly, which may provide a promising method to detect and
to confirm the existence of the MFs. Moreover, realization of
the braiding may significantly promote applications of MFs in
topological quantum computations in the near future.

It is also insightful to address the dependence of the above
results on the parameters of the charged impurity. As seen
in Fig. 4, there exists a charged-impurity-induced insulating
“hole” with radius Rh around 10 lattice constants. Here the
radius (Rh) is quite important for the appearance of a single
MF. We have checked numerically this point for different sets
of parameters (Z,d, and a). For example, only one MF appears
in one hole for the range 6 � RH � 20, which gives 0.7 �
Z � 2 for the case of d = a = 4 Å, or 0.5 � Z � 1.5 for
d = a = 3 Å. Thus our main results seem to be robust against
the parameters within a reasonable range, making it possible
to realize the proposal with current experimental technology.

We now elaborate on the difference between charged-
impurity-induced MFs and vortex-induced ones. As is known,
the vortex is normally associated with a magnetic flux. The
effect of the flux has been discussed in detail in Ref. [3], i.e.,
each vortex with magnetic flux binds a single zero-energy
Majorana mode inside this vortex, regardless of the size of the
vortex/flux [2,3]. However, when the magnetic flux is absent,
the zero-energy state shifts to low-energy states. Therefore,
the magnetic flux is important not only for creating the vortex,
but also for the appearance of the Majorana mode itself in the
vortex. On the other hand, in the present work, the excitations
of MFs are mainly determined by the hole size created by
the impurity. It is controlled by the parameters (a,Z, and d).
The MF excitation emerges when a large insulating hole is
induced. As the hole size decreases to be less than a critical
radius Rc (about six lattice constants, as discussed above), the
zero-energy state shifts to finite-energy states, and no MFs
are excited in this case, which is consistent with previous
studies on the pointlike impurity effect [38,40,41]. Also, the
emergence of MFs in a rather extended parameter region is a
noteworthy result. Further detailed studies on this issue will
be of interest.

Finally, we would like to remark on the significance of
the present work. First, we propose here an effective tool to
realize MFs subject to an off-plane charged impurity. The
MFs are bounded by the impurity. Technically they may be
well controlled through operating the impurities. Secondly,
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the two MFs are well separated in space, and there is almost
no overlap. This is different from the case of the MF states
induced by a harmonic potential [32]. Actually, the harmonic
potential increases and tends to be infinite far away from the
trapping center. Thus the superconducting region will only
exist in a small region. Thus the two MFs subject to a harmonic
potential are close in space. As a result, the two MFs should
overlap in space. On the other hand, for the MFs induced by
the Coulomb interaction, the potential tends to zero far away
from the impurity center. For the large system size, the two
MFs are sufficiently separated. This feature is of importance
and may merit further application in topological quantum
computation. Thirdly, for the two-dimensional lattice, the
property of the MFs is qualitatively similar to that of the
vortex-bounded MFs. Therefore, the non-Abelian statistics
feature may be seen more easily in experiments as the charged
impurities can be well-controlled, which is of fundamental
interest. Finally, it is worthwhile pointing out that there exists
another significant difference between the present work and the
previous one on the MFs induced by a harmonic potential [32].
In Ref. [32], the numerical calculation is based on a typical
model that considers a spin-dependent hopping term, which
was proposed to be realized in cold atom systems. However,
our numerical calculations and main results here are based on
a standard model of topological superconductors. They may

be generalized to other topological superconducting systems,
e.g., the p + ip superconducting systems or the semiconductor
nanowire/s-wave superconductor heterostructure system.

IV. SUMMARY

In summary, we have studied numerically the effect of an
off-plane charged impurity in topological superconductors. We
have revealed that the MFs can be induced by the impurity.
For a quasi-one-dimensional system, a pair of MFs are located
at the two sides of the impurity, while for a two-dimensional
system, one MF is bounded by the impurity and the other
appears at the boundary of the system. The LDOS spectra
have also been calculated, based upon which a clear indication
of the MFs may be observed experimentally.
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