10,209 research outputs found

    Drell-Yan Lepton Angular Distribution at Small Transverse Momentum

    Get PDF
    We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as generated by the lowest-order QCD annihilation and Compton processes. We focus in particular on the azimuthal-angular distributions, which are of the form cos(phi) and cos(2phi). At small transverse momentum q_T of the lepton pair, q_T << Q, with Q the pair mass, these terms are known to be suppressed relative to the phi-independent part of the Drell-Yan cross section by one or two powers of the transverse momentum. Nonetheless, as we show, like the phi-independent part they are subject to large logarithmic corrections, whose precise form however depends on the reference frame chosen. These logarithmic contributions ultimately require resummation to all orders in the strong coupling. We discuss the potential effects of resummation on the various angular terms in the cross section and on the Lam-Tung relation.Comment: 13 pages, 2 figures; reference added, minor other changes, matches version to be published in PR

    Exclusionary Zoning - An Unfair Target

    Get PDF

    Theoretical study of the synthesis of superheavy nuclei with Z= 119 and 120 in heavy-ion reactions with trans-uranium targets

    Full text link
    By using a newly developed di-nuclear system model with a dynamical potential energy surface---the DNS-DyPES model, hot fusion reactions for synthesizing superheavy nuclei (SHN) with the charge number Z = 112-120 are studied. The calculated evaporation residue cross sections are in good agreement with available data. In the reaction 50Ti+249Bk -> (299-x)119 + xn, the maximal evaporation residue (ER) cross section is found to be about 0.11 pb for the 4n-emission channel. For projectile-target combinations producing SHN with Z=120, the ER cross section increases with the mass asymmetry in the incident channel increasing. The maximal ER cross sections for 58Fe+244Pu and 54Cr + 248Cm are relatively small (less than 0.01 pb) and those for 50Ti+249Cf and 50Ti+251Cf are about 0.05 and 0.25 pb, respectively.Comment: 6 pages, 5 figures; Phys. Rev. C, in pres

    Formation of superheavy nuclei in cold fusion reactions

    Full text link
    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.Comment: 18 pages, 8 figure

    The group approach to AdS space propagators: A fast algorithm

    Full text link
    In this letter we show how the method of [4] for the calculation of two-point functions in d+1-dimensional AdS space can be simplified. This results in an algorithm for the evaluation of the two-point functions as linear combinations of Legendre functions of the second kind. This algorithm can be easily implemented on a computer. For the sake of illustration, we displayed the results for the case of symmetric traceless tensor fields with rank up to l=4.Comment: 14 pages, comment adde

    Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    Full text link
    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR

    A Unified Picture for Single Transverse-Spin Asymmetries in Hard Processes

    Full text link
    Using Drell-Yan pair production as an example, we explore the relation between two well-known mechanisms for single transverse-spin asymmetries in hard processes: twist-three quark-gluon correlations when the pair's transverse momentum is large, q⊥≫ΛQCDq_\perp \gg \Lambda_{\rm QCD}, and time-reversal-odd and transverse-momentum-dependent parton distributions when q⊥q_\perp is much less than the pair's mass. We find that although the two mechanisms have their own domain of validity, they describe the same physics in the kinematic region where they overlap. This unifies the two mechanisms and imposes an important constraint on phenomenological studies of single spin asymmetries.Comment: 4 pages, 3 figure
    • …
    corecore