352 research outputs found

    Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field

    Full text link
    We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Increasing or decreasing the magnetic field leads to electronic spin-flip transitions and increasing spin polarization. The increasing total spin of electrons appears as a manifold of closely spaced emission lines, while spin flips appear as discontinuities of emission lines. The number of multiplets and discontinuities measures the number of carriers and their spin. We present a complete analysis of the emission spectrum of a single quantum dot with N=4 electrons and a single hole, calculated and measured in magnetic fields up to 23 Tesla.Comment: 9 pages, 3 figures, submitted to Europhysics Letter

    The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy

    Full text link
    Transport measurements are presented on a class of electrostatically defined lateral dots within a high mobility two dimensional electron gas (2DEG). The new design allows Coulomb Blockade(CB) measurements to be performed on a single lateral dot containing 0, 1 to over 50 electrons. The CB measurements are enhanced by the spin polarized injection from and into 2DEG magnetic edge states. This combines the measurement of charge with the measurement of spin through spin blockade spectroscopy. The results of Coulomb and spin blockade spectroscopy for first 45 electrons enable us to construct the addition spectrum of a lateral device. We also demonstrate that a lateral dot containing a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review

    Exciton lifetime in InAs/GaAs quantum dot molecules

    Full text link
    The exciton lifetimes T1T_1 in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of T1T_1 by up to a factor of \sim 2 has been observed as compared to a quantum dots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of T1T_1 with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of T2T_2. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules

    The visibility study of S-T+_+ Landau-Zener-St\"uckelberg oscillations without applied initialization

    Full text link
    Probabilities deduced from quantum information studies are usually based on averaging many identical experiments separated by an initialization step. Such initialization steps become experimentally more challenging to implement as the complexity of quantum circuits increases. To better understand the consequences of imperfect initialization on the deduced probabilities, we study the effect of not initializing the system between measurements. For this we utilize Landau-Zener-St\"uckelberg oscillations in a double quantum dot circuit. Experimental results are successfully compared to theoretical simulations.Comment: 8 pages, 5 figure

    From laterally modulated two-dimensional electron gas towards artificial graphene

    Full text link
    Cyclotron resonance has been measured in far-infrared transmission of GaAs/Alx_xGa1x_{1-x}As heterostructures with an etched hexagonal lateral superlattice. Non-linear dependence of the resonance position on magnetic field was observed as well as its splitting into several modes. Our explanation, based on a perturbative calculation, describes the observed phenomena as a weak effect of the lateral potential on the two-dimensional electron gas. Using this approach, we found a correlation between parameters of the lateral patterning and the created effective potential and obtain thus insights on how the electronic miniband structure has been tuned. The miniband dispersion was calculated using a simplified model and allowed us to formulate four basic criteria that have to be satisfied to reach graphene-like physics in such systems

    Enhanced charge detection of spin qubit readout via an intermediate state

    Full text link
    We employ an intermediate excited charge state of a lateral quantum dot device to increase the charge detection contrast during the qubit state readout procedure, allowing us to increase the visibility of coherent qubit oscillations. This approach amplifies the coherent oscillation magnitude but has no effect on the detector noise resulting in an increase in the signal to noise ratio. In this letter we apply this scheme to demonstrate a significant enhancement of the fringe contrast of coherent Landau-Zener-Stuckleberg oscillations between singlet S and triplet T+ two-spin states.Comment: 3 pages, 3 figure

    Composite fermions in periodic and random antidot lattices

    Get PDF
    The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions

    Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect

    Full text link
    We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B_c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure

    The influence of the long-lived quantum Hall potential on the characteristics of quantum devices

    Full text link
    Novel hysteretic effects are reported in magneto-transport experiments on lateral quantum devices. The effects are characterized by two vastly different relaxation times (minutes and days). It is shown that the observed phenomena are related to long-lived eddy currents. This is confirmed by torsion-balance magnetometry measurements of the same 2-dimensional electron gas (2DEG) material. These observations show that the induced quantum Hall potential at the edges of the 2DEG reservoirs influences transport through the devices, and have important consequences for the magneto-transport of all lateral quantum devices.Comment: 5 pages, 4 figure

    Quantum Hall induced currents and the magnetoresistance of a quantum point contact

    Get PDF
    We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Features in the magnetic moment and QPC resistance are correlated at Landau-level filling factors nu=1, 2 and 4, which demonstrates the common origin of the effects. Temperature and non-linear sweep rate dependences are observed to be similar for the two effects. Furthermore, features in the noise of the induced currents, caused by breakdown of the quantum Hall effect, are observed to have clear correlations between the two measurements. In contrast, there is a distinct difference in the way that the induced currents decay with time when the sweeping field halts at integer filling factor. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split-gate. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, was not observed
    corecore