352 research outputs found
Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field
We present a theory and experiment demonstrating optical readout of charge
and spin in a single InAs/GaAs self-assembled quantum dot. By applying a
magnetic field we create the filling factor 2 quantum Hall singlet phase of the
charged exciton. Increasing or decreasing the magnetic field leads to
electronic spin-flip transitions and increasing spin polarization. The
increasing total spin of electrons appears as a manifold of closely spaced
emission lines, while spin flips appear as discontinuities of emission lines.
The number of multiplets and discontinuities measures the number of carriers
and their spin. We present a complete analysis of the emission spectrum of a
single quantum dot with N=4 electrons and a single hole, calculated and
measured in magnetic fields up to 23 Tesla.Comment: 9 pages, 3 figures, submitted to Europhysics Letter
The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy
Transport measurements are presented on a class of electrostatically defined
lateral dots within a high mobility two dimensional electron gas (2DEG). The
new design allows Coulomb Blockade(CB) measurements to be performed on a single
lateral dot containing 0, 1 to over 50 electrons. The CB measurements are
enhanced by the spin polarized injection from and into 2DEG magnetic edge
states. This combines the measurement of charge with the measurement of spin
through spin blockade spectroscopy. The results of Coulomb and spin blockade
spectroscopy for first 45 electrons enable us to construct the addition
spectrum of a lateral device. We also demonstrate that a lateral dot containing
a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review
Exciton lifetime in InAs/GaAs quantum dot molecules
The exciton lifetimes in arrays of InAs/GaAs vertically coupled quantum
dot pairs have been measured by time-resolved photoluminescence. A considerable
reduction of by up to a factor of 2 has been observed as compared
to a quantum dots reference, reflecting the inter-dot coherence. Increase of
the molecular coupling strength leads to a systematic decrease of with
decreasing barrier width, as for wide barriers a fraction of structures shows
reduced coupling while for narrow barriers all molecules appear to be well
coupled. The coherent excitons in the molecules gain the oscillator strength of
the excitons in the two separate quantum dots halving the exciton lifetime.
This superradiance effect contributes to the previously observed increase of
the homogeneous exciton linewidth, but is weaker than the reduction of .
This shows that as compared to the quantum dots reference pure dephasing
becomes increasingly important for the molecules
The visibility study of S-T Landau-Zener-St\"uckelberg oscillations without applied initialization
Probabilities deduced from quantum information studies are usually based on
averaging many identical experiments separated by an initialization step. Such
initialization steps become experimentally more challenging to implement as the
complexity of quantum circuits increases. To better understand the consequences
of imperfect initialization on the deduced probabilities, we study the effect
of not initializing the system between measurements. For this we utilize
Landau-Zener-St\"uckelberg oscillations in a double quantum dot circuit.
Experimental results are successfully compared to theoretical simulations.Comment: 8 pages, 5 figure
From laterally modulated two-dimensional electron gas towards artificial graphene
Cyclotron resonance has been measured in far-infrared transmission of
GaAs/AlGaAs heterostructures with an etched hexagonal lateral
superlattice. Non-linear dependence of the resonance position on magnetic field
was observed as well as its splitting into several modes. Our explanation,
based on a perturbative calculation, describes the observed phenomena as a weak
effect of the lateral potential on the two-dimensional electron gas. Using this
approach, we found a correlation between parameters of the lateral patterning
and the created effective potential and obtain thus insights on how the
electronic miniband structure has been tuned. The miniband dispersion was
calculated using a simplified model and allowed us to formulate four basic
criteria that have to be satisfied to reach graphene-like physics in such
systems
Enhanced charge detection of spin qubit readout via an intermediate state
We employ an intermediate excited charge state of a lateral quantum dot
device to increase the charge detection contrast during the qubit state readout
procedure, allowing us to increase the visibility of coherent qubit
oscillations. This approach amplifies the coherent oscillation magnitude but
has no effect on the detector noise resulting in an increase in the signal to
noise ratio. In this letter we apply this scheme to demonstrate a significant
enhancement of the fringe contrast of coherent Landau-Zener-Stuckleberg
oscillations between singlet S and triplet T+ two-spin states.Comment: 3 pages, 3 figure
Composite fermions in periodic and random antidot lattices
The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions
Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect
We have performed magnetotransport experiments in the high-temperature regime
(up to 50 K) of the integer quantum Hall effect for two-dimensional electron
gases in semiconducting heterostructures. While the magnetic field dependence
of the classical Hall law presents no anomaly at high temperatures, we find a
breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a
crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the
onset of the integer quantum Hall effect at low temperatures. We show that the
high magnetic field regime at B > B_c can be understood in terms of classical
percolative transport in a smooth disordered potential. From the temperature
dependence of the peak longitudinal conductance, we extract scaling exponents
which are in good agreement with the theoretically expected values. We also
prove that inelastic scattering on phonons is responsible for dissipation in a
wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure
The influence of the long-lived quantum Hall potential on the characteristics of quantum devices
Novel hysteretic effects are reported in magneto-transport experiments on
lateral quantum devices. The effects are characterized by two vastly different
relaxation times (minutes and days). It is shown that the observed phenomena
are related to long-lived eddy currents. This is confirmed by torsion-balance
magnetometry measurements of the same 2-dimensional electron gas (2DEG)
material. These observations show that the induced quantum Hall potential at
the edges of the 2DEG reservoirs influences transport through the devices, and
have important consequences for the magneto-transport of all lateral quantum
devices.Comment: 5 pages, 4 figure
Quantum Hall induced currents and the magnetoresistance of a quantum point contact
We report an investigation of quantum Hall induced currents by simultaneous
measurements of their magnetic moment and their effect on the conductance of a
quantum point contact (QPC). Features in the magnetic moment and QPC resistance
are correlated at Landau-level filling factors nu=1, 2 and 4, which
demonstrates the common origin of the effects. Temperature and non-linear sweep
rate dependences are observed to be similar for the two effects. Furthermore,
features in the noise of the induced currents, caused by breakdown of the
quantum Hall effect, are observed to have clear correlations between the two
measurements. In contrast, there is a distinct difference in the way that the
induced currents decay with time when the sweeping field halts at integer
filling factor. We attribute this difference to the fact that, while both
effects are sensitive to the magnitude of the induced current, the QPC
resistance is also sensitive to the proximity of the current to the QPC
split-gate. Although it is clearly demonstrated that induced currents affect
the electrostatics of a QPC, the reverse effect, the QPC influencing the
induced current, was not observed
- …