8 research outputs found

    Single-molecule force spectroscopy quantification of adhesive forces in cucurbit[8]uril host-guest ternary complexes.

    Get PDF
    Cucurbit[8]uril (CB[8]) heteroternary complexes display certain characteristics making them well-suited for molecular level adhesives. In particular, the ability to control adhesion through careful choice of host-guest binding pairs enables specific, fully reversible adhesion. Understanding the effect of the environment on the adhesive system is also critical when developing new molecular level adhesives. Here we explore the binding forces involved in the methyl viologen 路 CB[8] 路 napthol heteroternary complex using single-molecule force spectroscopy (SMFS) under a variety of conditions. From SMFS, the interaction of a single ternary complex was found to be in the region of 140 pN. Additionally, a number of surface interactions could be readily differentiated using the SMFS technique allowing for a deeper understanding of the dynamic heteroternary CB[8] system on the single-molecule scale.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC), the Walters-Kundert Charitable Trust and an ERC Starting Investigator grant (ASPiRe, 240629). ZWK, ERJ, YL thank the Royal Society of Chemistry for a grant allowing travel to Tsinghua University to carry out this research. YY would like to acknowledge financial support from the Young Scientists of the National Science Foundation of China (21304052). YL thanks the Chinese Overseas Scholarship Trust for financial support. JdB thanks the Marie Curie Actions program for financial support. PEW thanks the Atomic Weapons and Energy Commission and the Melville Laboratory for Polymer Synthesis for financial support

    Single-molecule force spectroscopy quantification of adhesive forces in cucurbit[8]uril host-guest ternary complexes.

    Get PDF
    Cucurbit[8]uril (CB[8]) heteroternary complexes display certain characteristics making them well-suited for molecular level adhesives. In particular, the ability to control adhesion through careful choice of host-guest binding pairs enables specific, fully reversible adhesion. Understanding the effect of the environment on the adhesive system is also critical when developing new molecular level adhesives. Here we explore the binding forces involved in the methyl viologen 路 CB[8] 路 napthol heteroternary complex using single-molecule force spectroscopy (SMFS) under a variety of conditions. From SMFS, the interaction of a single ternary complex was found to be in the region of 140 pN. Additionally, a number of surface interactions could be readily differentiated using the SMFS technique allowing for a deeper understanding of the dynamic heteroternary CB[8] system on the single-molecule scale.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC), the Walters-Kundert Charitable Trust and an ERC Starting Investigator grant (ASPiRe, 240629). ZWK, ERJ, YL thank the Royal Society of Chemistry for a grant allowing travel to Tsinghua University to carry out this research. YY would like to acknowledge financial support from the Young Scientists of the National Science Foundation of China (21304052). YL thanks the Chinese Overseas Scholarship Trust for financial support. JdB thanks the Marie Curie Actions program for financial support. PEW thanks the Atomic Weapons and Energy Commission and the Melville Laboratory for Polymer Synthesis for financial support

    Time-resolved laser spectroscopy for the in situ characterization of methacrylate monomer flow within spruce

    Get PDF
    Time-resolved diffuse optical spectroscopy (TRS) was investigated as a nondestructive method to characterize the post-impregnation distribution of methacrylate monomers within spruce (Piceaabies\textit{Picea abies}). TRS was also used to monitor the flow of methacrylate monomers in situ, within spruce, during impregnation with both spatial and temporal resolution. The data were compared to fluid flow models developed by Darcy and Bramhall demonstrating that neither of these models were able to accurately describe the experimental results, highlighting the need for development of new models. Nondestructive characterization by TRS did not require staining of the monomer treatment solution, multivariate analysis or complex sample pre-treatment, thus highlighting the facile applicability of this technique.The authors would like to thank Prof. Paul Linden and Dr. Henry Burridge for useful discussion during the preparation of this manuscript and the EPSRC, ERC Starting investigators Grant (ASPiRe, 240629), CUSBO, FP7 Laserlab-Europe (No. 284464) and the Walters Kundert Trust for financial support

    Renal Involvement in Children with Systemic Lupus Erythematosus

    No full text

    Renal Involvement in Children with Systemic Lupus Erythematosus

    No full text
    corecore