14 research outputs found

    Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells

    Get PDF
    High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC

    Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification

    Get PDF
    Changes in cardiac substrate utilisation leading to altered energy metabolism may underlie the development of diabetic cardiomyopathy. We studied cardiomyocyte substrate uptake and utilisation and the role of the fatty acid translocase CD36 in relation to in vivo cardiac function in rats fed a high-fat diet (HFD).Rats were exposed to an HFD or a low-fat diet (LFD). In vivo cardiac function was monitored by echocardiography. Substrate uptake and utilisation were determined in isolated cardiomyocytes.Feeding an HFD for 8 weeks induced left ventricular dilation in the systolic phase and decreased fractional shortening and the ejection fraction. Insulin-stimulated glucose uptake and proline-rich Akt substrate 40 phosphorylation were 41% (p <0.001) and 45% (p <0.05) lower, respectively, in cardiomyocytes from rats on the HFD. However, long-chain fatty acid (LCFA) uptake was 1.4-fold increased (p <0.001) and LCFA esterification into triacylglycerols and phospholipids was increased 1.4- and 1.5-fold, respectively (both p <0.05), in cardiomyocytes from HFD compared with LFD hearts. In the presence of the CD36 inhibitor sulfo-N-succinimidyloleate, LCFA uptake and esterification were similar in LFD and HFD cardiomyocytes. In HFD hearts CD36 was relocated to the sarcolemma, and basal phosphorylation of a mediator of CD36-trafficking, i.e. protein kinase B (PKB/Akt), was increased.Feeding rats an HFD induced cardiac contractile dysfunction, which was accompanied by the relocation of CD36 to the sarcolemma, and elevated basal levels of phosphorylated PKB/Akt. The permanent presence of CD36 at the sarcolemma resulted in enhanced rates of LCFA uptake and myocardial triacylglycerol accumulation, and may contribute to the development of insulin resistance and diabetic cardiomyopathy

    Mechanisms underlying electro-mechanical dysfunction in the Zucker diabetic fatty rat heart: a model of obesity and type 2 diabetes

    Get PDF
    Diabetes mellitus (DM) is a major and worsening global health problem, currently affecting over 450 million people and reducing their quality of life. Type 2 diabetes mellitus (T2DM) accounts for more than 90% of DM and the global epidemic of obesity, which largely explains the dramatic increase in the incidence and prevalence of T2DM in the past 20 years. Obesity is a major risk factor for DM which is a major cause of morbidity and mortality in diabetic patients. The electro-mechanical function of the heart is frequently compromised in diabetic patients. The aim of this review is to discuss the pathophysiology of electro-mechanical dysfunction in the diabetic heart and in particular, the Zucker diabetic fatty (ZDF) rat heart, a well-studied model of T2DM and obesity

    Mandible Biomechanics and Continuously Erupting Teeth: A New Defect Model for Studying Load-Bearing Biomaterials

    No full text
    Animals with elodont dentition and unfused mandible symphyses are hypothesized to have symmetric incisor morphology. Since these animals maintain their teeth by gnawing, they may provide physiologic feedback on mechanical function when unilateral mandible defects are created that manifest as ipsilateral changes in tooth structure. This defect model would potentially generate important information on the functional/mechanical properties of implants. Rats’ and rabbits’ mandibles and teeth are analyzed with µCT at baseline and post-intervention (n = 8 for each). Baseline incisors were compared. In a unilateral mandible pilot study, defects—ranging from critical size defect to complete ramus osteotomies—were created to assess effect on dentition (rats, n = 7; rabbits, n = 6). Within 90% confidence intervals, animals showed no baseline left/right differences in their incisors. There are apparent dental changes associated with unilateral defect type and location. Thus, at baseline, animals exhibit statistically significant incisor symmetry and there is an apparent relationship between mandible defect and incisor growth. The baseline symmetry proven here sets the stage to study the degree to which hemi-mandible destabilizing procedures result in measurable &amp; reproducible disruption of dental asymmetry. In a validated model, an implant designed to function under load that prevents incisor asymmetry would provide supporting evidence that the implant has clinically useful load-bearing function

    Nanophase bone substitute for craniofacial load bearing application: Pilot study in the rodent

    No full text
    An exploratory pilot study shows that a rodent mandibular defect model is useful in determining the biological response to a nanophase collagen/apatite composite designed as a biomimetic load-bearing bone substitute. Using a critical size defect, eight groups of rats (n = 3) were implanted with four renditions of the nanophase bone substitute (NBS) biomaterial. Each rendition was tested with and without recombinant human bone morphogenetic protein 2 (BMP2). NBS biomaterial renditions were: baseline, hyper-densified, d-ribose crosslinked, and d-ribose crosslinked and hyper-densified. Biological outcomes were assessed surgically, radiologically, and histologically. With the limited power available due to the small N\u27s involved, some interesting hypotheses were generated that will be more fully investigated in future studies. BMP2 loaded NBS, when uncrosslinked, resulted in robust bone formation in the entire defect volume (regardless of porosity). Unloaded NBS were well tolerated but did not cause significant new bone formation in the defect volume. Densification alone had little effect on in vivo performance. Crosslinking thwarted implant uptake of BMP2 and resulted in fibrous encapsulation. It is concluded that the nanophase bone substitute is well tolerated in this bone defect model. When loaded with BMP2, implantation resulted in complete bony healing and defect closure with implant density (porosity) having little effect on bone healing or remodeling. Without BMP2 the biomaterial did not result in defect closure. Crosslinking, necessary to increase mechanical properties in an aqueous environment, disrupts osteointegration and BMP2 uptake. Alternate implant fabrication strategies will be necessary to achieve an improved balance between material strength and osteointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 520-532, 2018
    corecore