16 research outputs found

    Self-consistent model for ambipolar tunneling in quantum-well systems

    Full text link
    We present a self-consistent approach to describe ambipolar tunneling in asymmetrical double quantum wells under steady-state excitation and extend the results to the case of tunneling from a near-surface quantum well to surface states. The results of the model compare very well with the behavior observed in photoluminescence experiments in InGaAs/InPInGaAs/InP asymmetric double quantum wells and in near-surface AlGaAs/GaAsAlGaAs/GaAs single quantum wells.Comment: 10 pages, REVTeX 3.

    Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates

    Get PDF
    Initial age-related degradation mechanisms for InAs quantum dot lasers grown on silicon substrates emitting at 1.3 μm are investigated. The rate of degradation is observed to increase for devices operated at higher carrier densities and is therefore dependent on gain requirement or cavity length. While carrier localization in quantum dots minimizes degradation, an increase in the number of defects in the early stages of aging can increase the internal optical-loss that can initiate rapid degradation of laser performance due to the rise in threshold carrier density. Population of the two-dimensional states is considered the major factor for determining the rate of degradation, which can be significant for lasers requiring high threshold carrier densities. This is demonstrated by operating lasers of different cavity lengths with a constant current and measuring the change in threshold current at regular intervals. A segmented-contact device, which can be used to measure the modal absorption and also operate as a laser, is used to determine how the internal optical-loss changes in the early stages of degradation. Structures grown on silicon show an increase in internal optical loss, whereas the same structure grown on GaAs shows no signs of increase in internal optical loss when operated under the same conditions

    Electrically pumped continuous-wave III–V quantum dot lasers on silicon

    Get PDF
    Reliable, efficient electrically pumped silicon-based lasers would enable full integration of photonic and electronic circuits, but have previously only been realized by wafer bonding. Here, we demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 A cm–2, a room-temperature output power exceeding 105 mW and operation up to 120 °C. Over 3,100 h of continuous-wave operating data have been collected, giving an extrapolated mean time to failure of over 100,158 h. The realization of high-performance quantum dot lasers on silicon is due to the achievement of a low density of threading dislocations on the order of 105 cm−2 in the III–V epilayers by combining a nucleation layer and dislocation filter layers with in situ thermal annealing. These results are a major advance towards reliable and cost-effective silicon-based photonic–electronic integration

    Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2

    Get PDF
    CdCl2 treatment is a crucial step in development of CdS/CdTe solar cells. Although this rocessing step has been used over a period of three decades, full understanding is not yet achieved. This paper reports the experimental evidence for improvement of composition of CdTe layers during CdCl2 treatment. This investigation makes use of four selected analytical techniques; Photo-electro-chemical (PEC) cell, X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM). CdTe layers used were electroplated using three Cd precursors; CdSO4, Cd(NO3)2 and CdCl2. Results show the improvement of stoichiometry of CdTe layers during CdCl2 treatment through chemical reaction between Cd from CdCl2 and elemental Te that usually precipitate during CdTe growth, due to its natural behaviour. XRD and SEM results show that the low-temperature (~85ºC) electroplated CdTe layers consist of ~(20-60) nm size crystallites, but after CdCl2 treatment, the layers show drastic recrystallisation with grains becoming a few microns in size. These CdCl2 treated layers are then comparable to high temperature grown CdTe layers by the size of grains

    Scientific complications and controversies noted in the field of CdS/CdTe thin film solar cells and the way forward for further development

    Get PDF
    Cadmium telluride-based solar cell is the most successfully commercialised thin film solar cell today. The laboratory-scale small devices have achieved ~ 22%, and commercial solar panels have reached ~ 18% conversion efficiencies. However, there are various technical complications and some notable scientific contradictions that appear in the scientific literature published since the early 1970s. This review paper discusses some of these major complications and controversies in order to focus future research on issues of material growth and characterisation, post-growth processing, device architectures and interpretation of the results. Although CdTe can be grown using more than 14 different growth techniques, successful commercialisation has been taken place using close-space sublimation and electrodeposition techniques only. The experimental results presented in this review are mainly based on electrodeposition. Historical trends of research and commercial successes have also been discussed compared to the timeline of novel breakthroughs in this field. Deeper understanding of these issues may lead to further increase in conversion efficiencies of this solar cell. Some novel ideas for further development of thin film solar cells are also discussed towards the end of this paper

    Optical spectroscopy of disordered systems

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX73236/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    Get PDF
    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10−7 and 3.5×10−6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7–1.9 and 2.6–2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed

    As/P exchange on InP(001) studied by reflectance anisotropy spectroscopy

    Get PDF
    Reflectance anisotropy spectroscopy (RAS) has been used to investigate the As/P exchange reaction for group V stabilized InP(001) surfaces exposed to As2 and/or P2, under molecular beam epitaxy conditions. By comparing RAS spectra taken before, during, and after As2 exposure it is possible to confirm that the As/P exchange reaction is exactly reversible over a range of temperatures from 420 to 560 °C. Time-resolved RAS measurements of the reaction rate, monitored at an energy of 2.65 eV, indicate that the activation energy for the exchange is 1.23±0.05 eV

    Optical monitoring of InP monolayer growth rates

    Get PDF
    Reflection anisotropy (RA) spectroscopy has been used to examine the in vacuo (001) surface of InP before and during growth by molecular beam epitaxy (MBE). The dominant effect on the RA signal occurring the initiation of growth is the change in the surface V/III ratio, caused by the exposure of the surface to the incident indium flux. During MBE growth of InP under commonly used conditions, RA oscillations are clearly observed. These oscillations have been confirmed to correspond to the growth of InP monolayers. The oscillations are tentatively ascribed to the variation in P coverage during the growth of each monolayer of material
    corecore