2,702 research outputs found

    Infall, Fragmentation and Outflow in Sgr B2

    Full text link
    Observations of H2_{2}CO lines and continuum at 1.3 mm towards Sgr B2(N) and Sgr B2(M) cores were carried out with the SMA. We imaged H2_{2}CO line absorption against the continuum cores and the surrounding line emission clumps. The results show that the majority of the dense gas is falling into the major cores where massive stars have been formed. The filaments and clumps of the continuum and gas are detected outside of Sgr B2(N) and Sgr B2(M) cores. Both the spectra and moment analysis show the presence of outflows from Sgr B2(M) cores. The H2_{2}CO gas in the red-shifted outflow of Sgr B2(M) appears to be excited by a non-LTE process which might be related to the shocks in the outflow.Comment: 5 pages, 3 figures, Published in J. Physics Conference Serie

    Influence of an external magnetic field on the decoherence of a central spin coupled to an antiferromagnetic environment

    Full text link
    Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process through its effect on the antiferromagnetic environment. It is shown explicitly that the decoherence factor which displays a Gaussian decay with time depends on the strength of the external magnetic field and the crystal anisotropy field in the antiferromagnetic environment. When the values of the external magnetic field is increased to the critical field point at which the spin-flop transition (a first-order quantum phase transition) happens in the antiferromagnetic environment, the decoherence of the central spin reaches its highest point. This result is consistent with several recent quantum phase transition witness studies. The influences of the environmental temperature on the decoherence behavior of the central spin are also investigated.Comment: 29 preprint pages, 4 figures, to appear in New Journal of Physic

    Terahertz radiation from plasma filament generated by two-color laser gas–plasma interaction

    Get PDF
    We develop a theoretical model for terahertz (THz) radiation generation, when an intense short laser pulse (ω1, k 1) is mixed with its frequency shifted second harmonic (ω2, k 2), where ω2 = 2ω1 + ωT and ωT is in the THz range in the plasma. The lasers exert a ponderomotive force on the electrons and drive density perturbations at (2ω1, 2k 1) and (ω2 − ω1, k 2 − k 1). These density perturbations couple with the oscillatory velocities of the electron due to the lasers and produce a nonlinear current at (ω2 − 2ω1, k 2 − 2k 1). This current acts as an antenna to produce the THz radiation. The THz power depends upon the square of plasma density and , where I 1 and I 2 are the intensities of fundamental and second harmonic laser. The radiation is mainly along the forward direction. Two-dimensional particle-in-cell simulations are used to study the near-field radiation properties

    Piecewise linear transformation in diffusive flux discretization

    Full text link
    To ensure the discrete maximum principle or solution positivity in finite volume schemes, diffusive flux is sometimes discretized as a conical combination of finite differences. Such a combination may be impossible to construct along material discontinuities using only cell concentration values. This is often resolved by introducing auxiliary node, edge, or face concentration values that are explicitly interpolated from the surrounding cell concentrations. We propose to discretize the diffusive flux after applying a local piecewise linear coordinate transformation that effectively removes the discontinuities. The resulting scheme does not need any auxiliary concentrations and is therefore remarkably simpler, while being second-order accurate under the assumption that the structure of the domain is locally layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational Physic

    Memory-built-in quantum teleportation with photonic and atomic qubits

    Full text link
    The combination of quantum teleportation and quantum memory of photonic qubits is essential for future implementations of large-scale quantum communication and measurement-based quantum computation. Both steps have been achieved separately in many proof-of-principle experiments, but the demonstration of memory-built-in teleportation of photonic qubits remains an experimental challenge. Here, we demonstrate teleportation between photonic (flying) and atomic (stationary) qubits. In our experiment, an unknown polarization state of a single photon is teleported over 7 m onto a remote atomic qubit that also serves as a quantum memory. The teleported state can be stored and successfully read out for up to 8 micro-second. Besides being of fundamental interest, teleportation between photonic and atomic qubits with the direct inclusion of a readable quantum memory represents a step towards an efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl

    Ion Kinetics and Neutron Generation Associated with Electromagnetic Turbulence in Laboratory-scale Counter-streaming Plasmas

    Full text link
    Electromagnetic turbulence and ion kinetics in counter-streaming plasmas hold great significance in laboratory astrophysics, such as turbulence field amplification and particle energization. Here, we quantitatively demonstrate for the first time how electromagnetic turbulence affects ion kinetics under achievable laboratory conditions (millimeter-scale interpenetrating plasmas with initial velocity of 2000 km/s2000\ \mathrm{km/s}, density of $4 \times 10^{19}\ \mathrm{cm}^{-3},andtemperatureof, and temperature of 100\ \mathrm{eV}$) utilizing a recently developed high-order implicit particle-in-cell code without scaling transformation. It is found that the electromagnetic turbulence is driven by ion two-stream and filamentation instabilities. For the magnetized scenarios where an applied magnetic field of tens of Tesla is perpendicular to plasma flows, the growth rates of instabilities increase with the strengthening of applied magnetic field, which therefore leads to a significant enhancement of turbulence fields. Under the competition between the stochastic acceleration due to electromagnetic turbulence and collisional thermalization, ion distribution function shows a distinct super-Gaussian shape, and the ion kinetics are manifested in neutron yields and spectra. Our results have well explained the recent unmagnetized experimental observations, and the findings of magnetized scenario can be verified by current astrophysical experiments.Comment: Accepted by Phys. Rev. Lett. on 12 Ma

    Quantum Memory with Optically Trapped Atoms

    Full text link
    We report the experimental demonstration of a quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic coherence. We probe the quantum storage by cross-correlation of the photon pair arising from the Raman scattering and the retrieval of the atomic state stored in the memory. Non-classical correlations are observed for storage times up to 60 microseconds.Comment: 4 pages, 3 figure

    Experimental demonstration of a BDCZ quantum repeater node

    Full text link
    Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.Comment: 5 pages, 4 figure
    • …
    corecore