37 research outputs found
Ancient horizontal gene transfer and the last common ancestors
Background
The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life.
Results
Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent “rare” forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life.
Conclusions
Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and contain many sites with low substitution rates allowing deep phylogenetic reconstruction. We conclude that some aaRS families contain groups that diverge before LUCA. We propose that these ancient gene variants be described by the term “hypnologs”, reflecting their ancient, reticulate origin from a time in life history that has been all but erased”.National Science Foundation (U.S.) (Grant DEB 0830024)Exobiology Program (U.S.) (Grant NNX10AR85G)United States. National Aeronautics and Space Administration (Postdoctoral Program
Post-mortem volatiles of vertebrate tissue
Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
Board social capital and excess CEO compensation
We suggest that the board's external and internal social capital are important concepts that may affect the board's ability to keep excess CEO pay under control. Further, we bridge the board social capital research with sociopolitical factors in order to provide a more holistic theoretical rationale for excess CEO compensation
The evolutionary history of Cys-tRNA(Cys) formation
The recent discovery of an alternate pathway for indirectly charging tRNA(Cys) has stimulated a re-examination of the evolutionary history of Cys-tRNA(Cys) formation. In the first step of the pathway, O-phosphoseryl-tRNA synthetase charges tRNA(Cys) with O-phosphoserine (Sep), a precursor of the cognate amino acid. In the following step, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep to Cys in a tRNA-dependent reaction. The existence of such a pathway raises several evolutionary questions, including whether the indirect pathway is a recent evolutionary invention, as might be implied from its localization to the Euryarchaea, or, as evidence presented here indicates, whether this pathway is more ancient, perhaps already in existence at the time of the last universal common ancestral state. A comparative phylogenetic approach is used, combining evolutionary information from protein sequences and structures, that takes both the signature of horizontal gene transfer and the recurrence of the full canonical phylogenetic pattern into account, to document the complete evolutionary history of cysteine coding and understand the nature of this process in the last universal common ancestral state. Resulting from the historical study of tRNA(Cys) aminoacylation and the integrative perspective of sequence, structure, and function are 3D models of O-phosphoseryl-tRNA synthetase and SepCysS, which provide experimentally testable predictions regarding the identity and function of key active-site residues in these proteins. The model of SepCysS is used to suggest a sulfhydrylation reaction mechanism, which is predicted to occur at the interface of a SepCysS dimer