197 research outputs found
Ab initio study on the magneto-structural properties of MnAs
The magnetic and structural properties of MnAs are studied with ab initio
methods, and by mapping total energies onto a Heisenberg model. The stability
of the different phases is found to depend mainly on the volume and on the
amount of magnetic order, confirming previous experimental findings and
phenomenological models. It is generally found that for large lattice constants
the ferromagnetic state is favored, whereas for small lattice constants
different antiferromagnetic states can be stabilized. In the ferromagnetic
state the structure with minimal energy is always hexagonal, whereas it becomes
orthorhombically distorted if there is an antiferromagnetic component in the
hexagonal plane. For the paramagnetic state the stable cell is found to be
orthorhombic up to a critical lattice constant of about 3.7 Angstrom, above
which it remains hexagonal. This leads to the second order structural phase
transition between paramagnetic states at about 400 K, where the lattice
parameter increases above this critical value with rising temperature due to
the thermal expansion. For the paramagnetic state an analytic approximation for
the magnitude of the orthorhombic distortion as a function of the lattice
constant is given. Within the mean field approximation the dependence of the
Curie temperature on the volume and on the orthorhombic distortion is
calculated. For orthorhombically distorted cells the Curie temperature is much
smaller than for hexagonal cells. This is mainly due to the fact that some of
the exchange coupling constants in the hexagonal plane become negative for
distorted cells. With these results a description of the susceptibility as
function of temperature is given
Finite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure
Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
We report the first ab initio density-functional study of screw
dislocations cores in the bcc transition metals Mo and Ta. Our results suggest
a new picture of bcc plasticity with symmetric and compact dislocation cores,
contrary to the presently accepted picture based on continuum and interatomic
potentials. Core energy scales in this new picture are in much better agreement
with the Peierls energy barriers to dislocation motion suggested by
experiments.Comment: 3 figures, 3 table
Spin dynamics from time-dependent density functional perturbation theory
We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville-Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally deals with the coupling between spin and charge fluctuations, without ever explicitly computing charge-density susceptibilities. Spin-wave excitations are obtained with one Lanczos chain per magnon wave-number and polarization, avoiding the solution of the linear-response problem for every individual value of frequency, as other state-of-the-art approaches do. Our method is validated by computing magnon dispersions in bulk Fe and Ni, resulting in agreement with previous theoretical studies in both cases, and with experiment in the case of Fe. The disagreement in the case of Ni is also comparable with that of previous computations
- …