9 research outputs found
Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages
A combination of various techniques was applied to investigate the mineralogy of the Neoproterozoic Urucum iron and manganese deposit (Brazil) and Carboniferous and Permian manganese carbonate deposits (China). The examined deposits exhibited signs of microbial mediation from Fe and Mn bacteria and cyanobacteria. The studied samples showed diversity in their composition and particle size. Probes from Urucum deposit revealed that the rocks consist mainly of hematite, showing Mn substitution which reflects the oxidation of Mn on the active surface of Fe-rich biomat. Nanominerals occurring in significant concentration also supported the microbial contribution to the formation of these ores. Representative samples of Neoproterozoic and Permian deposits showed considerable amount of mixed carbonates with variable composition. 57Fe Mössbauer spectroscopy analysis supported by X-ray diffraction and transmission electron microscopy data provided a detailed characterization of Fe-rich mineral phases of the samples, including metal ratio outlooks, particle size dimension and presence and type of impurities. Integrity and high resolution of the methods allowed to determine new features of the samples reflecting important signatures of microbial activity revealing the biogeochemistry of the biomat formation
Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques
Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95 % hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake