54 research outputs found

    Drive counts as a method of estimating ungulate density in forests: mission impossible?

    Get PDF
    Although drive counts are frequently used to estimate the size of deer populations in forests, little is known about how counting methods or the density and social organization of the deer species concerned influence the accuracy of the estimates obtained, and hence their suitability for informing management decisions. As these issues cannot readily be examined for real populations, we conducted a series of ‘virtual experiments’ in a computer simulation model to evaluate the effects of block size, proportion of forest counted, deer density, social aggregation and spatial auto-correlation on the accuracy of drive counts. Simulated populations of red and roe deer were generated on the basis of drive count data obtained from Polish commercial forests. For both deer species, count accuracy increased with increasing density, and decreased as the degree of aggregation, either demographic or spatial, within the population increased. However, the effect of density on accuracy was substantially greater than the effect of aggregation. Although improvements in accuracy could be made by reducing the size of counting blocks for low-density, aggregated populations, these were limited. Increasing the proportion of the forest counted led to greater improvements in accuracy, but the gains were limited compared with the increase in effort required. If it is necessary to estimate the deer population with a high degree of accuracy (e.g. within 10% of the true value), drive counts are likely to be inadequate whatever the deer density. However, if a lower level of accuracy (within 20% or more) is acceptable, our study suggests that at higher deer densities (more than ca. five to seven deer/100 ha) drive counts can provide reliable information on population size

    Demographic parameters of reintroduced grey partridges in central Italy and the effect of weather

    Full text link
    International audienceGrey partridge populations declined in Europe from mid-1950s onwards mostly due to modifications of agricultural cropping. In Italy, the decline was even more dramatic because of over-hunting and restocking with allochthonous birds. We carried out a research on a re-introduced population in Central Italy from 1995 to 2005, with the aim of evaluating the reintroduction success and separating the intrinsic and external factors influencing year-to-year changes in partridge density with particular respect to the weather. Average spring density was 4.5 pairs per square kilometre (SD = 1.52); our population reached a peak few years after the reintroduction and then declined. Brood production rate was close to that of declining European populations (average 33.9%; SD = 10.21), and chick survival rate (average 40%; = 17.61) determined the change of breeding abundance from year to year + 1. Our population seemed to be mainly affected by brood production and chick survival rates and by the weather; in particular, higher early winter and spring temperatures increased breeding density whilst higher early summer temperatures decreased brood production rate
    corecore