24 research outputs found

    Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures

    Get PDF
    The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer’s disease, Parkinson’s disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood–brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Growth hormone-releasing hormone activates sleep regulatory neurons of the rat preoptic hypothalamus

    No full text
    We examined whether growth hormone-releasing hormone (GHRH) may promote non-rapid eye movement (NREM) sleep via activation of GABAergic neurons in the preoptic area. Male Sprague-Dawley rats were implanted with EEG, EMG electrodes and a unilateral intracerebroventricular cannula. Groups of rats received injections (3 μl icv) with gonadotropin-releasing hormone (GHRH) (0.1 nmol/100 g body wt) or equal volume of physiological saline at the onset of the dark period and were permitted spontaneous sleep for 90 min. Separate groups of rats were sleep deprived by gentle handling for 90 min, beginning at the time of GHRH or saline injection, at the onset of the dark period. Other groups of rats received intracerebroventricular octreotide (somatostatin analog OCT) injections, intracerebroventricular injection of one of two doses of competitive GHRH antagonist, or intracerebroventricular saline injection at light onset and were then permitted 90 min spontaneous sleep-waking. Rats were killed immediately after the 90-min sleep/wake monitoring period. Brain tissue was processed for immunohistochemistry for c-Fos protein and glutamic acid decarboxylase (GAD). Single c-Fos and dual Fos-GAD cell counts were determined in the median preoptic nucleus (MnPN), and in the core and the extended parts of the ventrolateral preoptic nucleus (cVLPO and exVLPO). Intracerebroventricular GHRH elicited a significant increase in NREM sleep amount. Double-labeled Fos+GAD cell counts were significantly elevated after GHRH injection in the MnPN and VLPO in both undisturbed and sleep-deprived groups. OCT and GHRH antagonist significantly decreased NREM sleep amount compared with control rats. OCT injection increased single c-Fos-labeled cell counts in the MnPN, but not in the VLPO. Double-labeled cell counts were significantly reduced after OCT and the high dose of GHRH antagonist injection in all areas examined. These findings identify GABAergic neurons in the MnPN and VLPO as potential targets of the sleep-regulatory actions of GHRH

    Searching for HAdV-52, the putative gastroenteritis-associated human adenovirus serotype in Southern Hungary

    No full text
    Human adenovirus (HAdV) serotype 52 has recently been discovered in the United States in samples from human patients with gastroenteritis of unknown etiology and is suspected to be a new human enteric pathogen. The aim of the present pilot study was to investigate whether this virus is circulating in the population of Southern Hungary by screening stool specimens collected from gastroenteritis cases and communal sewage samples in the area of Baranya County. A total of 209 diarrheic stool (124 from children and 85 from adults) and 45 influent sewage samples were screened for HAdV-52 by PCR using a primer pair specific to the gene of 12.5K protein in the E3 genomic region. The novel human adenovirus was not detected in any of the tested samples, suggesting that HAdV-52 was not circulating in the target population and the area during the study period. Since temporal and geographical fluctuations may markedly affect the epidemiology of human enteric pathogens, additional investigations are required to gain more in- depth insights into the ecology of this novel adenovirus

    Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18, and MYT1L genes

    No full text
    International audienceObesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader-Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion
    corecore