25 research outputs found

    Bifidobacterium longum l-Arabinose Isomerase—Overexpression in Lactococcus lactis, Purification, and Characterization

    No full text
    Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (L-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum L-AI was characterized using D-galactose and L-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0–6.5. The enzyme showed the highest activity at 55 °C during a 20-min incubation at pH 6.5. The Km value was 120 mM for L-arabinose and 590 mM for D-galactose. The V max was 42 U mg−1 with L-arabinose and 7.7 U mg−1 with D-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum L-AI as the catalyst at 35 °C, equilibrium yields of 36 % D-tagatose and 11 % L-ribulose with 1.67 M D-galactose and L-arabinose, respectively, as the substrates were reached

    Nanosecond laser ablation and deposition of silicon

    Get PDF
    Nanosecond-pulsed KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) lasers were used to ablate a polycrystalline Si target in a background pressure of < 10(-4) Pa. Si films were deposited on Si and GaAs substrates at room temperature. The surface morphology of the films was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Round droplets from 20 nm to 5 mu m were detected on the deposited films. Raman Spectroscopy indicated that the micron-sized droplets were crystalline and the films were amorphous. The dependence of the properties of the films on laser wavelengths and fluence is discussed

    Metastable phase formation in particle-bombarded metallic systems

    No full text
    corecore