34 research outputs found

    Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    Get PDF
    Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 ÎŒM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathwa

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome

    Get PDF
    Background: Pathogenic variants of GNB5 encoding the ÎČ5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. Methods: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. Results: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/-, but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. Conclusions: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    Meteorological gaps in audits of pedestrian environments: a scoping review

    No full text
    Abstract Background Weather and season are determinants of physical activity. Therefore, it is important to ensure built environments are designed to mitigate negative impacts of weather and season on pedestrians to prevent these losses. This scoping review aims to identify built environment audits of pedestrian environments developed for use during a specific weather condition or season. Secondly, this review aims to investigate gaps in the inclusion of relevant weather mitigating built environment features in pedestrian environment audit tools. Methods Following a standard protocol, a systematic search was executed in CINAHL, Medline and Web of Science to identify built environment audit tools of pedestrian spaces. These databases were chosen since they are well-known to comprehensively cover health as well as multi-disciplinary research publications relevant to health. Studies were screened, and data were extracted from selected documents by two independent reviewers (e.g., psychometric properties and audit items included). Audit items were screened for the inclusion of weather mitigating built environment features, and the tool’s capacity to measure temperature, precipitation, seasonal and sustainability impacts on pedestrians was calculated. Results The search returned 2823 documents. After screening and full text review, 27 articles were included. No tool was found that was developed specifically for use during a specific weather condition or season. Additionally, gaps in the inclusion of weather mitigating items were found for all review dimensions (thermal comfort, precipitation, seasonal, and sustainability items). Poorly covered items were: (1) thermal comfort related (arctic entry presence, materials, textures, and colours of buildings, roads, sidewalk and furniture, and green design features); (2) precipitation related (drain presence, ditch presence, hazards, and snow removal features); (3) seasonal features (amenities, pedestrian scale lighting, and winter destinations and aesthetics); and (4) sustainability features (electric vehicle charging stations, renewable energy, car share, and bike share facilities). Conclusions Current built environment audit tools do not adequately include weather / season mitigating items. This is a limitation as it is important to investigate if the inclusion of these items in pedestrian spaces can promote physical activity during adverse weather conditions. Because climate change is causing increased extreme weather events, a need exists for the development of a new built environment audit tool that includes relevant weather mitigating features

    A longitudinal study of antibody responses to selected host antigens in rheumatic fever and rheumatic heart disease

    No full text
    Introduction. Group A streptococci can trigger autoimmune responses that lead to acute rheumatic fever (ARF) and rheumatic heart disease (RHD).Gap Statement. Some autoantibodies generated in ARF/RHD target antigens in the S2 subfragment region of cardiac myosin. However, little is known about the kinetics of these antibodies during the disease process.Aim. To determine the antibody responses over time in patients and healthy controls against host tissue proteins - cardiac myosin and peptides from its S2 subfragment, tropomyosin, laminin and keratin.Methodology. We used enzyme-linked immunosorbent assays (ELISA) to determine antibody responses in: (1) healthy controls; (2) patients with streptococcal pharyngitis; (3) patients with ARF with carditis and (4) patients with RHD on penicillin prophylaxis.Results. We observed significantly higher antibody responses against extracellular proteins - laminin and keratin in pharyngitis group, patients with ARF and patients with RHD when compared to healthy controls. The antibody responses against intracellular proteins - cardiac myosin and tropomyosin were elevated only in the group of patients with ARF with active carditis. While the reactivity to S2 peptides S2-1-3, 8-11, 14, 16-18, 21-22 and 32 was higher in patients with ARF, the reactivity in the RHD group was high only against S2-1, 9, 11, 12 when compared to healthy controls. The reactivity against S2 peptides reduced as the disease condition stabilized in the ARF group whereas the reactivity remained unaltered in the RHD group. By contrast antibodies against laminin and keratin persisted in patients with RHD.Conclusion. Our findings of antibody responses against host proteins support the multistep hypothesis in the development of rheumatic carditis. The differential kinetics of serum antibody responses against S2 peptides may have potential use as markers of ongoing cardiac damage that can be used to monitor patients with ARF/RHD

    Retinoblastoma in an adult

    No full text
    corecore