84 research outputs found

    A control algorithm for autonomous optimization of extracellular recordings

    Full text link

    Novel Use of Matched Filtering for Synaptic Event Detection and Extraction

    Get PDF
    Efficient and dependable methods for detection and measurement of synaptic events are important for studies of synaptic physiology and neuronal circuit connectivity. As the published methods with detection algorithms based upon amplitude thresholding and fixed or scaled template comparisons are of limited utility for detection of signals with variable amplitudes and superimposed events that have complex waveforms, previous techniques are not applicable for detection of evoked synaptic events in photostimulation and other similar experimental situations. Here we report on a novel technique that combines the design of a bank of approximate matched filters with the detection and estimation theory to automatically detect and extract photostimluation-evoked excitatory postsynaptic currents (EPSCs) from individually recorded neurons in cortical circuit mapping experiments. The sensitivity and specificity of the method were evaluated on both simulated and experimental data, with its performance comparable to that of visual event detection performed by human operators. This new technique was applied to quantify and compare the EPSCs obtained from excitatory pyramidal cells and fast-spiking interneurons. In addition, our technique has been further applied to the detection and analysis of inhibitory postsynaptic current (IPSC) responses. Given the general purpose of our matched filtering and signal recognition algorithms, we expect that our technique can be appropriately modified and applied to detect and extract other types of electrophysiological and optical imaging signals

    Spike detection and sorting: combining algebraic differentiations with ICA

    Get PDF
    International audienceA new method for action potentials detection is proposed. The method is based on a numerical differentiation, as recently intro- duced from operational calculus. We show that it has good performance as compared to existing methods. We also combine the proposed method with ICA in order to obtain spike sorting

    Recording advances for neural prosthetics

    Get PDF
    An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications

    Progress on the development of a holistic coupled model of dynamics for offshore wind farms : phase II - study on a data-driven based reduced-order model for a single wind turbine

    Get PDF
    At present, over 1500 offshore wind turbines (OWTs) are operating in the UK with a capacity of 5.4GW. Until now, the research has mainly focused on how to minimise the CAPEX, but Operation and Maintenance (O&M) can represent up to 39% of the lifetime costs of an offshore wind farm, mainly due to the assets’ high cost and the harsh environment in which they operate. Focusing on O&M, the HOME Offshore research project (www.homeoffshore.org) aims to derive an advanced interpretation of the fault mechanisms through holistic multiphysics modelling of the wind farm. With the present work, an advanced model of dynamics for a single wind turbine is developed, able to identify the couplings between aero-hydro-servo-elastic (AHSE) dynamics and drive train dynamics. The wind turbine mechanical components, modelled using an AHSE dynamic model, are coupled with a detailed representation of a variable-speed direct-drive 5MW permanent magnet synchronous generator (PMSG) and its fully rated voltage source converters (VSCs). Using the developed model for the wind turbine, several case studies are carried out for above and below rated operating conditions. Firstly, the response time histories of wind turbine degrees of freedom (DOFs) are modelled using a full-order coupled analysis. Subsequently, regression analysis is applied in order to correlate DOFs and generated rotor torque (target degree of freedom for the failure mode in analysis), quantifying the level of inherent coupling effects. Finally, the reduced-order multiphysics models for a single offshore wind turbine are derived based on the strength of the correlation coefficients. The accuracy of the proposed reduced-order models is discussed, comparing it against the full-order coupled model in terms of statistical data and spectrum. In terms of statistical results, all the reducedorder models have a good agreement with the full-order results. In terms of spectrum, all the reduced-order models have a good agreement with the full-order results if the frequencies of interest are below 0.75Hz

    pubmed2ensembl: A Resource for Mining the Biological Literature on Genes

    Get PDF
    The last two decades have witnessed a dramatic acceleration in the production of genomic sequence information and publication of biomedical articles. Despite the fact that genome sequence data and publications are two of the most heavily relied-upon sources of information for many biologists, very little effort has been made to systematically integrate data from genomic sequences directly with the biological literature. For a limited number of model organisms dedicated teams manually curate publications about genes; however for species with no such dedicated staff many thousands of articles are never mapped to genes or genomic regions.To overcome the lack of integration between genomic data and biological literature, we have developed pubmed2ensembl (http://www.pubmed2ensembl.org), an extension to the BioMart system that links over 2,000,000 articles in PubMed to nearly 150,000 genes in Ensembl from 50 species. We use several sources of curated (e.g., Entrez Gene) and automatically generated (e.g., gene names extracted through text-mining on MEDLINE records) sources of gene-publication links, allowing users to filter and combine different data sources to suit their individual needs for information extraction and biological discovery. In addition to extending the Ensembl BioMart database to include published information on genes, we also implemented a scripting language for automated BioMart construction and a novel BioMart interface that allows text-based queries to be performed against PubMed and PubMed Central documents in conjunction with constraints on genomic features. Finally, we illustrate the potential of pubmed2ensembl through typical use cases that involve integrated queries across the biomedical literature and genomic data.By allowing biologists to find the relevant literature on specific genomic regions or sets of functionally related genes more easily, pubmed2ensembl offers a much-needed genome informatics inspired solution to accessing the ever-increasing biomedical literature

    Comparative analysis of neural transcriptomes and functional implication of unannotated intronic expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptome and its regulation bridge the genome and the phenome. Recent RNA-seq studies unveiled complex transcriptomes with previously unknown transcripts and functions. To investigate the characteristics of neural transcriptomes and possible functions of previously unknown transcripts, we analyzed and compared nine recent RNA-seq datasets corresponding to tissues/organs ranging from stem cell, embryonic brain cortex to adult whole brain.</p> <p>Results</p> <p>We found that the neural and stem cell transcriptomes share global similarity in both gene and chromosomal expression, but are quite different from those of liver or muscle. We also found an unusually high level of unannotated expression in mouse embryonic brains. The intronic unannotated expression was found to be strongly associated with genes annotated for neurogenesis, axon guidance, negative regulation of transcription, and neural transmission. These functions are the hallmarks of the late embryonic stage cortex, and crucial for synaptogenesis and neural circuit formation.</p> <p>Conclusions</p> <p>Our results revealed unique global and local landscapes of neural transcriptomes. It also suggested potential functional roles for previously unknown transcripts actively expressed in the developing brain cortex. Our findings provide new insights into potentially novel genes, gene functions and regulatory mechanisms in early brain development.</p

    Generative Embedding for Model-Based Classification of fMRI Data

    Get PDF
    Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI). The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs) rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in ‘hidden’ physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs) and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and correlation-based methods. This example demonstrates how disease states can be detected with very high accuracy and, at the same time, be interpreted mechanistically in terms of abnormalities in connectivity. We envisage that future applications of generative embedding may provide crucial advances in dissecting spectrum disorders into physiologically more well-defined subgroups

    Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA

    Get PDF
    A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning)
    corecore