700 research outputs found
Coexisting pseudogap, charge transfer gap, and Mott gap energy scales in the resonant inelastic x-ray scattering spectra of electron-doped cuprates
We present a computation of Cu K-edge resonant inelastic x-ray scattering
(RIXS) spectra for electron-doped cuprates which includes coupling to bosonic
fluctuations. Comparison with experiment over a wide range of energy and
momentum transfers allows us to identify the signatures of three key
normal-state energy scales: the pseudogap, charge transfer gap, and Mott gap.
The calculations involve a three band Hubbard Hamiltonian based on Cu
and O , orbitals, with a self-energy correction which
arises due to spin and charge fluctuations. Our theory reproduces
characteristic features e.g., gap collapse, large spectral weight broadening,
and spectral weight transfer as a function of doping, as seen in experiments.Comment: 5 pages, 4 figure
Single-Dirac-Cone topological surface states in TlBiSe2 class of Topological Insulators
We have investigated several strong spin-orbit coupling ternary chalcogenides
related to the (Pb,Sn)Te series of compounds. Our first-principles calculations
predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and
TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We
identify the specific surface termination that realizes the single Dirac cone
through first-principles surface state computations. This termination minimizes
effects of dangling bonds making it favorable for photoemission (ARPES)
experiments. Our analysis predicts that thin films of these materials would
harbor novel 2D quantum spin Hall states, and support odd-parity topological
superconductivity. For a related work also see arXiv:1003.2615v1. Experimental
ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March
201
Carbamohydrazonothioate derivative—experimental and theoretical explorations of the crystal and molecular structure
Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?
There is considerable evidence for some form of charge ordering on the
hole-doped stripes in the cuprates, mainly associated with the low-temperature
tetragonal phase, but with some evidence for either charge density waves or a
flux phase, which is a form of dynamic charge-density wave. These three states
form a pseudospin triplet, demonstrating a close connection with the E X e
dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of
Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller
effect as a form of flux phase. A simple model of the Cu-O bond stretching
phonons allows an estimate of electron-phonon coupling for these modes,
explaining why the half breathing mode softens so much more than the full
oxygen breathing mode. The anomalous properties of provide a coupling
(correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon
modes, 16 eps figures, revte
Anisotropic softening of collective charge modes in the vicinity of critical doping in a doped Mott insulator
Momentum resolved inelastic resonant x-ray scattering is used to map the
evolution of charge excitations over a large range of energies, momenta and
doping levels in the electron doped Mott insulator class
NdCeCuO. As the doping induced AFM-SC
(antiferromagnetic-superconducting) transition is approached, we observe an
anisotropic softening of collective charge modes over a large energy scale
along the Gamma to (\pi,\pi)-direction, whereas the modes exhibit broadening
( 1 eV) with relatively little softening along Gamma to (\pi,0) with
respect to the parent Mott insulator (x=0). Our study indicates a systematic
collapse of the gap consistent with the scenario that the system dopes
uniformly with electrons even though the softening of the modes involves an
unusually large energy scale.Comment: 5 pages + 5 Figure
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
Doping Evolution of the Underlying Fermi Surface in La2-xSrxCuO4
We have performed a systematic doping dependent study of
LaSrCuO (LSCO) (0.030.3) by angle-resolved
photoemission spectroscopy. In the entire doping range, the underlying ``Fermi
surface" determined from the low energy spectral weight approximately satisfies
Luttinger's theorem, even down to the lightly-doped region. This is in strong
contrast to the result on CaNaCuOCl (Na-CCOC), which shows
a strong deviation from Luttinger's theorem. The differences between LSCO and
Na-CCOC are correlated with the different behaviors of the chemical potential
shift and spectral weight transfer induced by hole doping.Comment: 4 pages, 4 figure
Strong correlation effects and optical conductivity in electron doped cuprates
We demonstrate that most features ascribed to strong correlation effects in
various spectroscopies of the cuprates are captured by a calculation of the
self-energy incorporating effects of spin and charge fluctuations. The self
energy is calculated over the full doping range of electron-doped cuprates from
half filling to the overdoped system. The spectral function reveals four
subbands, two widely split incoherent bands representing the remnant of the
split Hubbard bands, and two additional coherent, spin- and charge-dressed
in-gap bands split by a spin-density wave, which collapses in the overdoped
regime. The incoherent features persist to high doping, producing a remnant
Mott gap in the optical spectra, while transitions between the in-gap states
lead to pseudogap features in the mid-infrared.Comment: 5 pages, 4 figure
- …
