56 research outputs found

    SGNP: An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport

    Get PDF
    Background: Stress Granules (SG) are sites of accumulation of stalled initiation complexes that are induced following a variety of cellular insults. In a genetic screen for factors involved in protecting human myoblasts from acute oxidative stress, we identified a gene encoding a protein we designate SGNP (Stress Granule and Nucleolar Protein). Methodology/Principal Findings: A gene-trap insertional mutagenesis screen produced one insertion that conferred resistance to sodium arsenite. RT-PCR/39 RACE was used to identify the endogenous gene expressed as a GFP-fusion transcript. SGNP is localized in both the cytoplasm and nucleolus and defines a non-nucleolar compartment containing 5.8S rRNA, a component of the 60S ribosomal subunit. Under oxidative stress, SGNP nucleolar localization decreases and it rapidly co-localizes with stress granules. The decrease in nucleolar SGNP following oxidative stress was accompanied by a large increase in nucleolar 5.8S rRNA. Knockdown of SGNP with shRNA increased global mRNA translation but induced growth arrest and cell death. Conclusions: These results suggest that SGNP is an essential gene that may be involved in ribosomal biogenesis and translational control in response to oxidative stress

    MicroRNAome of Porcine Pre- and Postnatal Development

    Get PDF
    The domestic pig is of enormous agricultural significance and valuable models for many human diseases. Information concerning the pig microRNAome (miRNAome) has been long overdue and elucidation of this information will permit an atlas of microRNA (miRNA) regulation functions and networks to be constructed. Here we performed a comprehensive search for porcine miRNAs on ten small RNA sequencing libraries prepared from a mixture of tissues obtained during the entire pig lifetime, from the fetal period through adulthood. The sequencing results were analyzed using mammalian miRNAs, the precursor hairpins (pre-miRNAs) and the first release of the high-coverage porcine genome assembly (Sscrofa9, April 2009) and the available expressed sequence tag (EST) sequences. Our results extend the repertoire of pig miRNAome to 867 pre-miRNAs (623 with genomic coordinates) encoding for 1,004 miRNAs, of which 777 are unique. We preformed real-time quantitative PCR (q-PCR) experiments for selected 30 miRNAs in 47 tissue-specific samples and found agreement between the sequencing and q-PCR data. This broad survey provides detailed information about multiple variants of mature sequences, precursors, chromosomal organization, development-specific expression, and conservation patterns. Our data mining produced a broad view of the pig miRNAome, consisting of miRNAs and isomiRs and a wealth of information of pig miRNA characteristics. These results are prelude to the advancement in pig biology as well the use of pigs as model organism for human biological and biomedical studies

    Retinoic Acids Potentiate BMP9-Induced Osteogenic Differentiation of Mesenchymal Progenitor Cells

    Get PDF
    As one of the least studied bone morphogenetic proteins (BMPs), BMP9 is one of the most osteogenic BMPs. Retinoic acid (RA) signaling is known to play an important role in development, differentiation and bone metabolism. In this study, we investigate the effect of RA signaling on BMP9-induced osteogenic differentiation of mesenchymal progenitor cells (MPCs).Both primary MPCs and MPC line are used for BMP9 and RA stimulation. Recombinant adenoviruses are used to deliver BMP9, RARalpha and RXRalpha into MPCs. The in vitro osteogenic differentiation is monitored by determining the early and late osteogenic markers and matrix mineralization. Mouse perinatal limb explants and in vivo MPC implantation experiments are carried out to assess bone formation. We find that both 9CRA and ATRA effectively induce early osteogenic marker, such as alkaline phosphatase (ALP), and late osteogenic markers, such as osteopontin (OPN) and osteocalcin (OC). BMP9-induced osteogenic differentiation and mineralization is synergistically enhanced by 9CRA and ATRA in vitro. 9CRA and ATRA are shown to induce BMP9 expression and activate BMPR Smad-mediated transcription activity. Using mouse perinatal limb explants, we find that BMP9 and RAs act together to promote the expansion of hypertrophic chondrocyte zone at growth plate. Progenitor cell implantation studies reveal that co-expression of BMP9 and RXRalpha or RARalpha significantly increases trabecular bone and osteoid matrix formation.Our results strongly suggest that retinoid signaling may synergize with BMP9 activity in promoting osteogenic differentiation of MPCs. This knowledge should expand our understanding about how BMP9 cross-talks with other signaling pathways. Furthermore, a combination of BMP9 and retinoic acid (or its agonists) may be explored as effective bone regeneration therapeutics to treat large segmental bony defects, non-union fracture, and/or osteoporotic fracture
    • …
    corecore