1,094 research outputs found
Object Picture of Quasinormal Modes for Stringy Black Holes
We study the quasinormal modes (QNMs) for stringy black holes. By using
numerical calculation, the relations between the QNMs and the parameters of
black holes are minutely shown. For (1+1)-dimensional stringy black hole, the
real part of the quasinormal frequency increases and the imaginary part of the
quasinormal frequency decreases as the mass of the black hole increases.
Furthermore, the dependence of the QNMs on the charge of the black hole and the
flatness parameter is also illustrated. For (1+3)-dimensional stringy black
hole, increasing either the event horizon or the multipole index, the real part
of the quasinormal frequency decreases. The imaginary part of the quasinormal
frequency increases no matter whether the event horizon is increased or the
multipole index is decreased.Comment: 4 pages, 5 figure
An Intercultural Management Perspective of Foreign Student’s Adaptation in Chinese Universities: A Case Study of China Three Gorges University
Globalization, the desire to access quality education and better opportunities abroad as well as the need to develop one’s capacities and many other factors have caused increased migration of international students and teachers into Chinese universities. China has recorded over a 67% increase in higher education enrolment between 2011 and 2017. This increased level of student migration in China has brought an unprecedented number of challenges especially in transitioning into the cultural settings in China. As a result, Chinese universities, in addition to their various obligations and roles in ensuring quality teaching and learning, have to engage in intercultural management to help foreigners’ transition seamlessly into the cultural landscape of China. This study examines intercultural adaptation of sojourners from an intercultural management perspective. Using a mixed method approach, specifically an explanatory mixed method design, a sample of 140 respondents was investigated regarding their cultural adaptation to a Chinese university. The positive and negative aspects of intercultural management as it relates to the university used in the case study were also explored. Findings from the study were discussed in depth and recommendations for a holistic intercultural management system were made
Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution
In this paper, the effect of the intrinsic distribution of cosmological
candles is investigated. We find that, in the case of a narrow distribution,
the deviation of the observed modulus of sources from the expected central
value could be estimated within a ceratin range. We thus introduce a lower and
upper limits of , and , to
estimate cosmological parameters by applying the conventional minimizing method. We apply this method to a gamma-ray burst (GRB) sample as well as
to a combined sample including this GRB sample and an SN Ia sample. Our
analysis shows that: a) in the case of assuming an intrinsic distribution of
candles of the GRB sample, the effect of the distribution is obvious and should
not be neglected; b) taking into account this effect would lead to a poorer
constraint of the cosmological parameter ranges. The analysis suggests that in
the attempt of constraining the cosmological model with current GRB samples,
the results tend to be worse than what previously thought if the mentioned
intrinsic distribution does exist.Comment: 6 pages,4 figures,1 tables.Data updated. Main conclusion unchange
Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction
Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness
Low-lying S-wave and P-wave Dibaryons in a Nodal Structure Analysis
The dibaryon states as six-quark clusters of exotic QCD states are
investigated in this paper. With the inherent nodal surface structure analysis,
the wave functions of the six-quark clusters (in another word, the dibaryons)
are classified. The contribution of the hidden color channels are discussed.
The quantum numbers of the low-lying dibaryon states are obtained. The States
, ,
, and the
hidden color channel states with the same quantum numbers are proposed to be
the candidates of dibaryons, which may be observed in experiments.Comment: 29 pages, 2 figure
Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in and collisions in =22 GeV
Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in pi/sup positive and K/sup positive collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint of energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed
Study of radiative decays into a vector meson
The decays () are studied with
a sample of radiative \psip\to\gamma\chi_{cJ} events in a sample of
(1.06\pm0.04)\times 10^{8} \psip events collected with the BESIII detector.
The branching fractions are determined to be: , , and . The decay is observed for the first time. Upper limits at the 90% confidence
level on the branching fractions for and \chict decays into these
final states are determined. In addition, the fractions of the transverse
polarization component of the vector meson in decays
are measured to be for , for , and for , respectively. The first errors are statistical and the second
ones are systematic.Comment: 8 pages, 3 figure
Observation of decays into vector meson pairs , , and
Decays of to vector meson pairs , and
are observed for the first time using
\psip events accumulated at the BESIII detector at the BEPCII
collider. The branching fractions are measured to be , , and , for , , and ,
respectively. The observation of decays into a pair of vector
mesons , and indicates that the hadron
helicity selection rule is significantly violated in decays. In
addition, the measurement of gives the rate of doubly
OZI-suppressed decay. Branching fractions for and
decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure
First Observation of the Decays chi_{cJ} -> pi^0 pi^0 pi^0 pi^0
We present a study of the P-wave spin -triplet charmonium chi_{cJ} decays
(J=0,1,2) into pi^0 pi^0 pi^0 pi^0. The analysis is based on 106 million
\psiprime decays recorded with the BESIII detector at the BEPCII electron
positron collider. The decay into the pi^0 pi^0 pi^0 pi^0 hadronic final state
is observed for the first time. We measure the branching fractions B(chi_{c0}
-> pi^0 pi^0 pi^0 pi^0)=(3.34 +- 0.06 +- 0.44)*10^{-3}, B(chi_{c1} -> pi^0 pi^0
pi^0 pi^0)=(0.57 +- 0.03 +- 0.08)*10^{-3}, and B(chi_{c2} -> pi^0 pi^0 pi^0
pi^0)=(1.21 +- 0.05 +- 0.16)*10^{-3}, where the uncertainties are statistical
and systematical, respectively.Comment: 7 pages, 3 figure
Higher-order multipole amplitude measurement in
Using events collected with the BESIII detector at
the BEPCII storage ring, the higher-order multipole amplitudes in the radiative
transition are measured.
A fit to the production and decay angular distributions yields
and , where the first
errors are statistical and the second systematic. Here denotes the
normalized magnetic quadrupole amplitude and the normalized electric
octupole amplitude. This measurement shows evidence for the existence of the
signal with statistical significance and is consistent with
the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure
- …