31,193 research outputs found

    Solidification behavior and microstructural evolution of near-eutectic Zn-Al alloys under intensive shear

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical and Materials Transactions A, 40(1), 185 - 195 and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.The effect of intensive shear on the solidification behavior and microstructural evolution of binary Zn-Al alloys is presented at hypoeutectic, eutectic, and hypereutectic compositions. It is found that the intensive shear, applied on the eutectic melt prior to solidification at a temperature above but close the eutectic temperature, can significantly reduce the size of eutectic cells, but the solidified microstructure still remains the lamellar morphology. For applying intensive shear on the melt during solidification, the nucleation occurs at temperatures very close to the equilibrium condition and requires very small undercooling for both the primary solidification and the eutectic solidification. The intensive shear can significantly alter the microstructural morphology. In contrast to the dendritic morphology formed in the conventional solidification, the primary Al-rich phase in hypoeutectic Zn-Al alloy and the primary Zn-rich phase in hypereutectic Zn-Al alloy under intensive shear exhibit fine and spherical particles, respectively. The lamellae morphology of Zn-rich phase and Al-rich phase formed in the conventional eutectic solidification exhibit fine and spherical particles. The increase of intensity of shear promotes the independence of solid Zn-rich particles and Al-rich particles during the eutectic solidification, resulting in the uniform and separate distribution of two solid particles in the matrix. It is speculated that the high intensity of shear can result in the independent nucleation of individual eutectic phase throughout the whole melt, and the separate growth of solid phases in the subsequent solidification

    A super-ductile alloy for the die-casting of aluminium automotive body structural components

    Get PDF
    Super-ductile die-cast aluminium alloys are critical to future light-weighting of automotive body structures. This paper introduces a die-cast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a die-cast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation. © (2014) Trans Tech Publications, Switzerland.The EPSRC and JLR U

    Robust fault detection for networked systems with distributed sensors

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust fault detection problem for a class of discrete-time networked systems with distributed sensors. Since the bandwidth of the communication channel is limited, packets from different sensors may be dropped with different missing rates during the transmission. Therefore, a diagonal matrix is introduced to describe the multiple packet dropout phenomenon and the parameter uncertainties are supposed to reside in a polytope. The aim is to design a robust fault detection filter such that, for all probabilistic packet dropouts, all unknown inputs and admissible uncertain parameters, the error between the residual (generated by the fault detection filter) and the fault signal is made as small as possible. Two parameter-dependent approaches are proposed to obtain less conservative results. The existence of the desired fault detection filter can be determined from the feasibility of a set of linear matrix inequalities that can be easily solved by the efficient convex optimization method. A simulation example on a networked three-tank system is provided to illustrate the effectiveness and applicability of the proposed techniques.This work was supported by national 973 project under Grants 2009CB320602 and 2010CB731800, and the NSFC under Grants 60721003 and 60736026

    Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting

    Get PDF
    The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR

    Microstructural evolution and solidification behavior of Al-Mg-Si alloy in high-pressure die casting

    Get PDF
    Copyright @ 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(7), 3185 - 3197 and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Microstructural evolution and solidification behavior of Al-5 wt pct Mg-1.5 wt pct Si-0.6 wt pct Mn-0.2 wt pct Ti alloy have been investigated using high-pressure die casting. Solidification commences with the formation of primary a-Al phase in the shot sleeve and is completed in the die cavity. The average size of dendrites and fragmented dendrites of the primary a-Al phase formed in the shot sleeve is 43 lm, and the globular primary a-Al grains formed inside the die cavity is at a size of 7.5 lm. Solidification inside the die cavity also forms the lamellar Al-Mg2Si eutectic phase and the Fe-rich intermetallics. The size of the eutectic cells is about 10 lm, in which the lamellar a-Al phase is 0.41 lm thick. The Fe-rich intermetallic compound exhibits a compact morphology and is less than 2 lm with a composition of 1.62 at. pct Si, 3.94 at. pct Fe, and 2.31 at. pct Mn. A solute-enriched circular band is always observed parallel to the surface of the casting. The band zone separates the outer skin region from the central region of the casting. The solute concentration is consistent in the skin region and shows a general drop toward the center inside the band for Mg and Si. The peak of the solute enrichment in the band zone is much higher than the nominal composition of the alloy. The die casting exhibits a combination of brittle and ductile fracture. There is no significant difference on the fracture morphology in the three regions. The band zone is not significantly detrimental in terms of the fracture mechanism in the die casting. Calculations using the Mullins and Sekerka stability criterion reveal that the solidification of the primary a-Al phase inside the die cavity has been completed before the spherical a-Al globules begin to lose their stability, but the a-Al grains formed in the shot sleeve exceed the limit of spherical growth and therefore exhibit a dendritic morphologyEPSRC and JL

    A statistical model to describe invariants extracted from a 3-D quadric surface patch and its applications in region-based recognition

    Get PDF
    A statistical model, describing noise-disturbed invariants extracted from a surface patch of a range image, has been developed and applied to region based pose estimation and classification of 3D quadrics. The Mahalanobis distance, which yields the same results as a Baysian classifier, is used for the classification of the surface patches. The results, compared with the Euclidean distance, appear to be much more reliabl

    The complexity-theoretic Bell inequality

    Full text link

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, β-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped β-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of β-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

    Get PDF
    Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nano pores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrode posits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane
    corecore