33,575 research outputs found
Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys
Gravitational lensing effects arise from the light ray deflection by all of
the mass distribution along the line of sight. It is then expected that weak
lensing cluster surveys can provide us true mass-selected cluster samples. With
numerical simulations, we analyze the correspondence between peaks in the
lensing convergence -map and dark matter halos. Particularly we
emphasize the difference between the peak value expected from a dark
matter halo modeled as an isolated and spherical one, which exhibits a
one-to-one correspondence with the halo mass at a given redshift, and that of
the associated -peak from simulations. For halos with the same expected
, their corresponding peak signals in the -map present a wide
dispersion. At an angular smoothing scale of , our
study shows that for relatively large clusters, the complex mass distribution
of individual clusters is the main reason for the dispersion. The projection
effect of uncorrelated structures does not play significant roles. The
triaxiality of dark matter halos accounts for a large part of the dispersion,
especially for the tail at high side. Thus lensing-selected clusters
are not really mass-selected. (abridged)Comment: ApJ accepte
High energy neutrino early afterglows from gamma-ray bursts revisited
The high energy neutrino emission from gamma-ray bursts (GRBs) has been
expected in various scenarios. In this paper, we study the neutrino emission
from early afterglows of GRBs, especially under the reverse-forward shock model
and late prompt emission model. In the former model, the early afterglow
emission occurs due to dissipation made by an external shock with the
circumburst medium (CBM). In the latter model, internal dissipation such as
internal shocks produces the shallow decay emission in early afterglows. We
also discuss implications of recent Swift observations for neutrino signals in
detail. Future neutrino detectors such as IceCube may detect neutrino signals
from early afterglows, especially under the late prompt emission model, while
the detection would be difficult under the reverse-forward shock model.
Contribution to the neutrino background from the early afterglow emission may
be at most comparable to that from the prompt emission unless the outflow
making the early afterglow emission loads more nonthermal protons, and it may
be important in the very high energies. Neutrino-detections are inviting
because they could provide us with not only information on baryon acceleration
but also one of the clues to the model of early afterglows. Finally, we compare
various predictions for the neutrino background from GRBs, which are testable
by future neutrino-observations.Comment: 18 pages, 12 figures, accepted for publication in PR
Periodicities in Solar Coronal Mass Ejections
Mid-term quasi-periodicities in solar coronal mass ejections (CMEs) during
the most recent solar maximum cycle 23 are reported here for the first time
using the four-year data (February 5, 1999 to February 10, 2003) of the Large
Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric
Observatory (SOHO). In parallel, mid-term quasi-periodicities in solar X-ray
flares (class >M5.0) from the Geosynchronous Operational Environment Satellites
(GOES) and in daily averages of Ap index for geomagnetic disturbances from the
World Data Center (WDC) at the International Association for Geomagnetism and
Aeronomy (IAGA) are also examined for the same four-year time span. Several
conceptual aspects of possible equatorially trapped Rossby-type waves at and
beneath the solar photosphere are discussed.Comment: Accepted by MNRAS, 6 figure
- âŠ