7 research outputs found

    Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage

    No full text
    This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the External Cooperation Program of BIC, Grant No. 211134KYSB20130025, the National Fundamental Research Program (under Grant No: 2011CB921300, 2013CB933300), and the State of Bavaria. S.H. acknowledges the CAS visiting professorship.Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.PostprintPeer reviewe

    Truffle renaissance in Poland – history, present and prospects

    No full text
    corecore