475 research outputs found

    Theory for superconductivity in (Tl,K)Fex_xSe2_2 as a doped Mott insulator

    Full text link
    Possible superconductivity in recently discovered (Tl,K)Fex_xSe2_2 compounds is studied from the viewpoint of doped Mott insulator. The Mott insulating phase is examined to be preferred in the parent compound at x=1.5x=1.5 due to the presence of Fe vacancies. Partial filling of vacancies at the Fe-sites introduces electron carriers and leads to electron doped superconductivity. By using a two-orbital Hubbard model in the strong coupling limit, we find that the s-wave pairing is more favorable at small Hund's coupling, and dx2−y2_{x^2-y^2} wave pairing is more favorable at large Hund's coupling.Comment: 4+ pages, 3 figures, to appear in EP

    Classification of second harmonic generation effect in magnetic materials

    Full text link
    The second harmonic generation (SHG) effect is a powerful tool for characterizing the magnetic structures of materials. Bridging the connection between the SHG effect and the symmetries of magnetic materials has been at the frontier of fundamental research in condensed matter physics. The construction of a complete and exclusive classification of SHG effect of magnetic materials offers a straightforward approach to insight into these intriguing connections. In this work, we proposed a comprehensive classification of the SHG effect in magnetic materials using \emph{isomorphic group} method. Seven types of SHG effect in magnetic materials have been classified by considering the symmetries of the magnetic phases and the corresponding parent phases. This classification clearly depicts the physical origins of the SHG effect in magnetic materials with various symmetries. Specifically, the classification predicts that the magnetism could also purely contribute to the even parts (not invariant under time reversal operation, or ii-type) of the SHG effect, which enriches the conventional understandings. In addition, a dictionary containing SHG and linear magneto-optic effect of magnetic materials in MANGDATA database is further established. The first-principles calculations on some representative magnetic materials further validate the effectiveness of the proposed classification. Our findings provide an efficient way to reveal the underlying physics of the SHG effect in magnetic materials, and can help us to explore magnetic properties via the SHG effect more conveniently and instructively

    Multiparty Quantum Secret Report

    Full text link
    A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her MM agents first share a sequence of (MM+1)-particle Greenberger--Horne--Zeilinger (GHZ) states that only Alice knows which state each (MM+1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a σx\sigma_x operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measure them with two measuring bases. After confirming the security of the quantum key, they use the GHZ states remained repeatedly for next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for qubits and the total efficiency.Comment: 4 pages, no figure

    Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state

    Full text link
    We present a scheme for symmetric multiparty quantum state sharing of an arbitrary mm-qubit state with mm Greenberger-Horne-Zeilinger states following some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338 (2005)]. The sender Alice performs mm Bell-state measurements on her 2m2m particles and the controllers need only to take some single-photon product measurements on their photons independently, not Bell-state measurements, which makes this scheme more convenient than the latter. Also it does not require the parties to perform a controlled-NOT gate on the photons for reconstructing the unknown mm-qubit state and it is an optimal one as its efficiency for qubits approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129

    q-Form fields on p-branes

    Full text link
    In this paper, we give one general method for localizing any form (q-form) field on p-branes with one extra dimension, and apply it to some typical p-brane models. It is found that, for the thin and thick Minkowski branes with an infinite extra dimension, the zero mode of the q-form fields with q<(p-1)/2 can be localized on the branes. For the thick Minkowski p-branes with one finite extra dimension, the localizable q-form fields are those with q<p/2, and there are also some massive bound Kaluza-Klein modes for these q-form fields on the branes. For the same q-form field, the number of the bound Kaluza-Klein modes (but except the scalar field (q=0)) increases with the dimension of the p-branes. Moreover, on the same p-brane, the q-form fields with higher q have less number of massive bound KK modes. While for a family of pure geometrical thick p-branes with a compact extra dimension, the q-form fields with q<p/2 always have a localized zero mode. For a special pure geometrical thick p-brane, there also exist some massive bound KK modes of the q-form fields with q<p/2, whose number increases with the dimension of the p-brane.Comment: 14 pages, 2 figures, published versio

    New Family of Robust 2D Topological Insulators in van der Waals Heterostructures

    Full text link
    We predict a new family of robust two-dimensional (2D) topological insulators in van der Waals heterostructures comprising graphene and chalcogenides BiTeX (X=Cl, Br and I). The layered structures of both constituent materials produce a naturally smooth interface that is conducive to proximity induced new topological states. First principles calculations reveal intrinsic topologically nontrivial bulk energy gaps as large as 70-80 meV, which can be further enhanced up to 120 meV by compression. The strong spin-orbit coupling in BiTeX has a significant influence on the graphene Dirac states, resulting in the topologically nontrivial band structure, which is confirmed by calculated nontrivial Z2 index and an explicit demonstration of metallic edge states. Such heterostructures offer an unique Dirac transport system that combines the 2D Dirac states from graphene and 1D Dirac edge states from the topological insulator, and it offers new ideas for innovative device designs

    Quantum secure direct communication network with superdense coding and decoy photons

    Full text link
    A quantum secure direct communication network scheme is proposed with quantum superdense coding and decoy photons. The servers on a passive optical network prepare and measure the quantum signal, i.e., a sequence of the dd-dimensional Bell states. After confirming the security of the photons received from the receiver, the sender codes his secret message on them directly. For preventing a dishonest server from eavesdropping, some decoy photons prepared by measuring one photon in the Bell states are used to replace some original photons. One of the users on the network can communicate any other one. This scheme has the advantage of high capacity, and it is more convenient than others as only a sequence of photons is transmitted in quantum line.Comment: 6 pages, 2 figur

    Spontaneous Mirror Parity Violation, Common Origin of Matter and Dark Matter, and the LHC Signatures

    Full text link
    Existence of a mirror world in the universe is a fundamental way to restore the observed parity violation in weak interactions and provides the lightest mirror nucleon as a unique GeV-scale dark matter particle candidate. The visible and mirror worlds share the same spacetime of the universe and are connected by a unique space-inversion symmetry -- the mirror parity (P). We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and study its spontaneous breaking from minimizing the Higgs vacuum potential. The domain wall problem is resolved by a unique soft breaking linear-term from the P-odd weak-singlet Higgs field. We also derive constraint from the Big-Bang nucleosynthesis. We then analyze the neutrino seesaw for both visible and mirror worlds, and demonstrate that the desired amounts of visible matter and mirror dark matter in the universe arise from a common origin of CP violation in the neutrino sector via leptogenesis. We derive the Higgs mass-spectrum and Higgs couplings with gauge bosons and fermions. We show their consistency with the direct Higgs searches and the indirect precision constraints. We further study the distinctive signatures of the predicted non-standard Higgs bosons at the LHC. Finally, we analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments.Comment: 55pp. PRD final version. Only minor refinements (including to comment on the latest LHC Higgs searches in Sec.5 and estimate abundances of mirror dark matter particles in Sec.6); more references adde
    • …
    corecore