13,448 research outputs found

    Inflationary dynamics of kinetically-coupled gauge fields

    Full text link
    We investigate the inflationary dynamics of two kinetically-coupled massless U(1)U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1)U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field from the dark sector, generated perhaps before the coupling was turned on, to the visible sector. We also investigate whether the simple existence of the mixing provides more opportunities to generate magnetic fields. We find that neither possibility works efficiently, consistent with the well-known difficulties in inflationary magnetogenesis.Comment: 17 pages, 0 figures. Matches JCAP versio

    How to project onto extended second order cones

    Get PDF
    The extended second order cones were introduced by S. Z. N\'emeth and G. Zhang in [S. Z. N\'emeth and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended second order cones. Journal of Global Optimization, 66(3):585-593, 2016] determined the automorphism groups and the Lyapunov or bilinearity ranks of these cones. S. Z. N\'emeth and G. Zhang in [S.Z. N\'emeth and G. Zhang. Positive operators of Extended Lorentz cones. arXiv:1608.07455v2, 2016] found both necessary conditions and sufficient conditions for a linear operator to be a positive operator of an extended second order cone. This note will give formulas for projecting onto the extended second order cones. In the most general case the formula will depend on a piecewise linear equation for one real variable which will be solved by using numerical methods

    Bouncing Eddington-inspired Born-Infeld cosmologies: an alternative to Inflation ?

    Full text link
    We study the dynamics of a homogeneous and isotropic Friedmann-Robertson-Walker universe in the context of the Eddington-inspired Born-Infeld theory of gravity. We generalize earlier results, obtained in the context of a radiation dominated universe, to account for the evolution of a universe permeated by a perfect fluid with an arbitrary equation of state parameter ww. We show that a bounce may occur for κ>0\kappa >0, if ww is time-dependent, and we demonstrate that it is free from tensor singularities. We argue that Eddington-inspired Born-Infeld cosmologies may be a viable alternative to the inflationary paradigm as a solution to fundamental problems of the standard cosmological model.Comment: 4 pages, 1 figur

    On the spherical convexity of quadratic functions

    Get PDF
    In this paper we study the spherical convexity of quadratic functions on spherically convex sets. In particular, conditions characterizing the spherical convexity of quadratic functions on spherical convex sets associated to the positive orthants and Lorentz cones are given
    • …
    corecore