190 research outputs found

    Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks

    Full text link
    Many real-world networks exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Particularly in social networks, the contribution to the total assortativity varies with degree, featuring a distinctive peak slightly past the average degree. The way traditional models imprint assortativity on top of pre-defined topologies is via degree-preserving link permutations, which however destroy the particular graph's hierarchical traits of clustering. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties and tunable realistic assortativity. In our approach, two distinct populations of nodes are added to an initial network seed: one (the followers) that abides by usual preferential rules, and one (the potential leaders) connecting via anti-preferential attachments, i.e. selecting lower degree nodes for their initial links. The latter nodes come to develop a higher average degree, and convert eventually into the final hubs. Examining the evolution of links in Facebook, we present empirical validation for the connection between the initial anti-preferential attachment and long term high degree. Thus, our work sheds new light on the structure and evolution of social networks

    The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) Biomarkers Predict Clinical Deterioration and Mortality in Immunocompromised Children Evaluated for Infection

    Get PDF
    Pediatric sepsis and bacterial infection cause significant morbidity and mortality worldwide, with immunocompromised patients being at particularly high risk of rapid deterioration and death. This study evaluated if PERSEVERE, PERSEVERE-II, or the PERSEVERE biomarkers, can reliably estimate the risk of clinical deterioration and 28-day mortality among immunocompromised pediatric patients. This is a single-center prospective cohort study conducted from July 2016 through September 2017 incorporating 400 episodes of suspected bacterial infection from the inpatient units at Cincinnati Children's Hospital Medical Center, a large, tertiary care children's hospital. The primary analysis assessed clinical deterioration within 72 hours of evaluation for infection. Secondarily, we assessed 28-day mortality. Clinical deterioration was seen in 15% of subjects. Twenty-eight day mortality was 5%, but significantly higher among critically ill patients. Neither PERSEVERE nor PERSEVERE-II performed well to predict clinical deterioration or 28-day mortality, thus we derived new stratification models using the PERSEVERE biomarkers with both high sensitivity and negative predictive value. In conclusion, we evaluated previously validated biomarker risk models in a novel population of largely non-critically ill immunocompromised pediatric patients, and attempted to stratify patients based on a new outcome metric, clinical deterioration. The new highly predictive models indicate common physiologic pathways to clinical deterioration or death from bacterial infection

    A Radio Study of the Seyfert Galaxy IC 5063: Evidence for Fast Gas Outflow

    Get PDF
    New radio continuum (8 GHz and 1.4 GHz) and HI 21 cm line observations of the Seyfert 2 galaxy IC 5063 (PKS 2048-572) were obtained with the Australia Telescope Compact Array (ATCA). The 8 GHz image reveals a linear triple structure (~4'', 1.5 kpc) oriented perpendicular to the optical polarization position angle. It is aligned with the inner dust lane and shows strong morphological association with the narrow emission line region (NLR). At 21 cm, very broad (~700 km/s) HI absorption is observed against the strong continuum source. This absorption is almost entirely blueshifted, indicating a fast net outflow, but a faint and narrow redshifted component is also present. In IC 5063 we see clear evidence for strong shocks resulting from the radio plasma-ISM interaction in the central few kpc. However, the energy flux in the radio plasma is an order of magnitude smaller than the energy emitted in emission lines. Thus, shocks are unlikely to account solely for the global ionization of the emission line region, particularly at large distances. The HI emission outlines a warped disk associated with the system of dust lanes some ~2' (~38 kpc) in radius. The lack of kinematically disturbed gas outside the central few kpc, coupled with the disk warp and close morphological connection of the inner dust lanes and the large-scale ionized gas, support the idea that the gas at large radii is photoionized by the central region, while shadowing effects are important in defining its X-shaped morphology. The kinematics of the ionized and of the neutral gas suggests the existence of a dark halo.Comment: 18 pages, 8 Postscript figures, 3 jpeg figures, Postscript preprint is available from http://jhufos.pha.jhu.edu/~zlatan/papers.htm

    Dynamics and Excitation of Radio Galaxy Emission-Line Regions - I. PKS 2356-61

    Get PDF
    Results are presented from a programme of detailed longslit spectroscopic observations of the extended emission-line region (EELR) associated with the powerful radio galaxy PKS 2356-61. The observations have been used to construct spectroscopic datacubes, which yield detailed information on the spatial variations of emission-line ratios across the EELR, together with its kinematic structure. We present an extensive comparison between the data and results obtained from the MAPPINGS II shock ionization code, and show that the physical properties of the line-emitting gas, including its ionization, excitation, dynamics and overall energy budget, are entirely consistent with a scenario involving auto-ionizing shocks as the dominant ionization mechanism. This has the advantage of accounting for the observed EELR properties by means of a single physical process, thereby requiring less free parameters than the alternative scheme involving photoionization by radiation from the active nucleus. Finally, possible mechanisms of shock formation are considered in the context of the dynamics and origin of the gas, specifically scenarios involving infall or accretion of gas during an interaction between the host radio galaxy and a companion galaxy.Comment: 35 pages, LaTeX, uses aas2pp4.sty file, includes 9 PostScript figures. Two additional colour plates are available from the authors upon request. Accepted for publication in the Astrophysical Journa

    Febrile Neutropenia in Children: Etiologies, Outcomes, and Risk Factors with Prolonged Fever

    Get PDF
    Most studies of children with prolonged fever and neutropenia (PFN) have focused on invasive fungal disease (IFD) as the etiology of fever and not on other causes. Data are lacking regarding risk factors and adverse outcomes in pediatric cancer patients with PFN compared with those whose fevers resolve more rapidly. Retrospective medical record review was performed for all cancer patients with febrile neutropenia (FN) in the pediatric oncology unit at University of Chicago Medicine Comer Children’s Hospital from March 2009 to July 2016. Resolving febrile neutropenia (RFN), lasting less than 96 hours, and PFN episodes (≄ 96 hours) were compared to identify risk factors and outcomes associated with PFN. A total of 572 FN episodes were identified in 265 patients. PFN occurred in 119 (21%) FN episodes (50 patients) and RFN occurred in 453 (79%) FN episodes (215 patients). In multivariable analysis, autologous stem cell transplant (odds ratio [OR] 6.5, P 39°C at the time of presentation (OR 2.4, P<0.01) and absolute monocyte count (AMC) <100 cells/m3 (OR 2.7, P=<0.01) were independently associated with PFN. Pneumonia, neutropenic enterocolitis and IFD were more common etiologies of fever in PFN compared with RFN. Patients with PFN were more likely to be admitted to the pediatric intensive care unit [OR 3, (95%CI, 1.66%-5.28%), P<0.001] and had a trend toward higher 30-day mortality [OR 3.8, (95%CI, 0.52%-29.32%), P=0.07]. Patients with PFN are at increased risk for serious illness and death. A better understanding of the etiologies of PFN other than IFD is needed to be able to appropriately diagnose and treat this high-risk group

    Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties

    Get PDF
    As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict the transcriptional activity for one-, two-, three- and four-site p53 mutants, respectively. With the approach from the general form of pseudo amino acid composition, we used eight types of features to represent the mutation and then selected the optimal prediction features based on the maximum relevance, minimum redundancy, and incremental feature selection methods. The Mathew's correlation coefficients (MCC) obtained by using nearest neighbor algorithm and jackknife cross validation for one-, two-, three- and four-site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively. It was revealed by the further optimal feature set analysis that the 2D (two-dimensional) structure features composed the largest part of the optimal feature set and maybe played the most important roles in all four types of p53 mutant active status prediction. It was also demonstrated by the optimal feature sets, especially those at the top level, that the 3D structure features, conservation, physicochemical and biochemical properties of amino acid near the mutation site, also played quite important roles for p53 mutant active status prediction. Our study has provided a new and promising approach for finding functionally important sites and the relevant features for in-depth study of p53 protein and its action mechanism

    Joint Cosmological Formation of QSOs and Bulge-dominated Galaxies

    Get PDF
    Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analyzed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable which determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurence of a major merger are considered as candidates to this role. The predictions of the model are compared to available data for the type-dependent galaxy mass functions, the star-formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray background), the mass function of dormant black holes and the distribution of black-hole -- bulge mass ratios. A good agreement with observations is obtained if the halo spin modulates the efficiency of black-hole formation, and if the galactic halos at z=0z=0 have shone in an inverted order with respect to the hierarchical one (i.e., stars and black holes in bigger galactic halos have formed before those in smaller ones). This inversion of hierarchical order for galaxy formation, which reconciles galaxy formation with QSO evolution, is consistent with many pieces of observational evidence.Comment: 20 pages, figures included, mn.sty, in press on MNRAS, fig 6 changed (new data added at z=4.4

    The rise of inconspicuous consumption

    Get PDF
    Ever since Veblen and Simmel, luxury has been synonymous with conspicuous consumption. In this conceptual paper we demonstrate the rise of inconspicuous consumption via a wide-ranging synthesis of the literature. We attribute this rise to the signalling ability of traditional luxury goods being diluted, a preference for not standing out as ostentatious during times of economic hardship, and an increased desire for sophistication and subtlety in design in order to further distinguish oneself for a narrow group of peers. We decouple the constructs of luxury and conspicuousness, which allows us to reconceptualise the signalling quality of brands and the construct of luxury. This also has implications for understanding consumer behaviour practices such as counterfeiting and suggests that consumption trends in emerging markets may take a different path from the past

    Fact and fiction in housing research: utilizing the creative imagination

    Get PDF
    As much of our conceptual framework is informed by the experience of the imagination, there is much to be learnt from a study of various creative forms. Narrative fiction can be one such form, allowing us to gain a useful insight into complex features of social life. The purpose of this article is to investigate the treatment of housing issues in contemporary literature in order to gain insights into attitudes, experiences and interpretations from the perspective of a broad cultural milieu. Discussions of professionalism, housing tenure and homelessness have tended to be conducted within a narrow framework and adopted orthodox modes of evaluation. Consequently, the neglect of housing within a wider cultural context has reinforced the isolation of housing issues. The article argues that although discussions of housing and housing policy have been seriously limited within the contemporary novel, there are a number of key insights that can be gained from a discussion of issues within a fictional setting
    • 

    corecore