16 research outputs found

    All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers

    Get PDF
    Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism

    Birth, growth and computation of pi to ten trillion digits

    Get PDF

    Isolation, biosynthesis and chemical modifications of Rubterolones A-F:rare tropolone alkaloids from <i>Actinomadura </i>sp 5-2

    No full text
    The discovery of six new, highly substituted tropolone alkaloids, rubterolones A–F, from Actinomadura sp. 5-2, isolated from the gut of the fungus-growing termite Macrotermes natalensis is reported. Rubterolones were identified by using fungus-bacteria challenge assays and a HRMS-based dereplication strategy, and characterised by NMR and HRMS analyses and by X-ray crystallography. Feeding experiments and subsequent chemical derivatisation led to a first library of rubterolone derivatives (A–L). Genome sequencing and comparative analyses revealed their putative biosynthetic pathway, which was supported by feeding experiments. This study highlights how gut microbes can present a prolific source of secondary metabolites.The Daimler Benz foundation to C.B., the Villum Kann Rasmussen Foundation for a Young Investigator Fellowship (VKR10101) to M.P. R.B., the International Leibniz Research School for Microbial and Biomolecular Interactions (ILRS) and School for Microbial Communication (JSMC, DFG).http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-37652018-07-12hj2017Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog
    corecore