191,696 research outputs found
Average distance in a hierarchical scale-free network: an exact solution
Various real systems simultaneously exhibit scale-free and hierarchical
structure. In this paper, we study analytically average distance in a
deterministic scale-free network with hierarchical organization. Using a
recursive method based on the network construction, we determine explicitly the
average distance, obtaining an exact expression for it, which is confirmed by
extensive numerical calculations. The obtained rigorous solution shows that the
average distance grows logarithmically with the network order (number of nodes
in the network). We exhibit the similarity and dissimilarity in average
distance between the network under consideration and some previously studied
networks, including random networks and other deterministic networks. On the
basis of the comparison, we argue that the logarithmic scaling of average
distance with network order could be a generic feature of deterministic
scale-free networks.Comment: Definitive version published in Journal of Statistical Mechanic
Exploring Quantum Phase Transitions with a Novel Sublattice Entanglement Scenario
We introduce a new measure called reduced entropy of sublattice to quantify
entanglement in spin, electron and boson systems. By analyzing this quantity,
we reveal an intriguing connection between quantum entanglement and quantum
phase transitions in various strongly correlated systems: the local extremes of
reduced entropy and its first derivative as functions of the coupling constant
coincide respectively with the first and second order transition points. Exact
numerical studies merely for small lattices reproduce several well-known
results, demonstrating that our scenario is quite promising for exploring
quantum phase transitions.Comment: 4 pages, 4 figure
Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions
We propose a feasible scheme to achieve holonomic quantum computation in a
decoherence-free subspace (DFS) with trapped ions. By the application of
appropriate bichromatic laser fields on the designated ions, we are able to
construct two noncommutable single-qubit gates and one controlled-phase gate
using the holonomic scenario in the encoded DFS.Comment: 4 pages, 3 figures. To appear in Phys. Rev. A 74 (2006
Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films
We have systematically studied the evolution of magnetic properties,
especially the coercivity and the remanence ratio in the vicinity of the Verwey
transition temperature (TV ), of high-quality epitaxial Fe3O4 thin films grown
on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We
observed rapid change of magnetization, coercivity, and remanence ratio at TV ,
which are consistent with the behaviors of resistivity versus temperature
[\r{ho}(T )] curves for the different thin films. In particular, we found quite
different magnetic behaviors for the thin films onMgOfrom those onMAOand STO,
inwhich the domain size and the strain state play very important roles. The
coercivity is mainly determined by the domain size but the demagnetization
process is mainly dependent on the strain state. Furthermore, we observed a
reversal of remanence ratio at TV with thickness for the thin films grown on
MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film,
and the critical thickness is about 80 nm. Finally, we found an obvious
hysteretic loop of coercivity (or remanence ratio) with temperature around TV ,
corresponding to the hysteretic loop of the \r{ho}(T ) curve, in Fe3O4 thin
film grown on MgO
Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts
A correlation between the peak luminosity and the peak energy has been found
by Yonetoku et al. as for 11 pre-Swift long
gamma-ray bursts. In this study, for a greatly expanded sample of 148 long
gamma-ray bursts in the Swift era, we find that the correlation still exists,
but most likely with a slightly different power-law index, i.e., . In addition, we have collected 17 short gamma-ray bursts with
necessary data. It is found that the correlation of also exists for this sample of short events. It is argued that the
radiation mechanism of both long and short gamma-ray bursts should be similar,
i.e., of quasi-thermal origin caused by the photosphere and the dissipation
occurring very near the central engine. Some key parameters of the process are
constrained. Our results suggest that the radiation process of both long and
short bursts may be dominated by thermal emission, rather than the single
synchrotron radiation. This might put strong physical constraints on the
theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap
Recombining your way out of trouble: the genetic architecture of hybrid fitness under environmental stress
Hybridization between species is a fundamental evolutionary force that can both promote and delay adaptation. There is a deficit in our understanding of the genetic basis of hybrid fitness, especially in non-domesticated organisms. We also know little about how hybrid fitness changes as a function of environmental stress. Here, we made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species, exposed populations to ten toxins, and sequenced the most resilient hybrids on low coverage using ddRADseq. We expected to find strong negative epistasis and heterozygote advantage in the hybrid genomes. We investigated three aspects of hybridness: 1) hybridity, 2) interspecific heterozygosity, and 3) epistasis (positive or negative associations between non-homologous chromosomes). Linear mixed effect models revealed strong genotype-by-environment interactions with many chromosomes and chromosomal interactions showing species-biased content depending on the environment. Against our predictions, we found extensive selection against heterozygosity such that homozygous allelic combinations from the same species were strongly overrepresented in an otherwise hybrid genomic background. We also observed multiple cases of positive epistasis between chromosomes from opposite species, confirmed by epistasis- and selection-free simulations, which is surprising given the large divergence of the parental species (~15% genome-wide). Together, these results suggest that stress-resilient hybrid genomes can be assembled from the best features of both parents, without paying high costs of negative epistasis across large evolutionary distances. Our findings illustrate the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of hybrid populations
- …
