4,470 research outputs found

    The SFXC software correlator for Very Long Baseline Interferometry: Algorithms and Implementation

    Get PDF
    In this paper a description is given of the SFXC software correlator, developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The software is designed to run on generic Linux-based computing clusters. The correlation algorithm is explained in detail, as are some of the novel modes that software correlation has enabled, such as wide-field VLBI imaging through the use of multiple phase centres and pulsar gating and binning. This is followed by an overview of the software architecture. Finally, the performance of the correlator as a function of number of CPU cores, telescopes and spectral channels is shown.Comment: Accepted by Experimental Astronom

    Impact of human CA8 on thermal antinociception in relation to morphine equivalence in mice

    Get PDF
    Recently, we showed that murine dorsal root ganglion (DRG) Car8 expression is a cis-regulated eQTL that determines analgesic responses. In this report, we show that transduction through sciatic nerve injection of DRG with human wild-type carbonic anhydrase-8 using adeno-associated virus viral particles (AAV8-V5-CA8WT) produces analgesia in naive male C57BL/6J mice and antihyperalgesia after carrageenan treatment. A peak mean increase of about 4 s in thermal hindpaw withdrawal latency equaled increases in thermal withdrawal latency produced by 10 mg/kg intraperitoneal morphine in these mice. Allometric conversion of this intraperitoneal morphine dose in mice equals an oral morphine dose of about 146 mg in a 60-kg adult. Our work quantifies for the first time analgesia and antihyperalgesia in an inflammatory pain model after DRG transduction by CA8 gene therapy

    Decay of one dimensional surface modulations

    Full text link
    The relaxation process of one dimensional surface modulations is re-examined. Surface evolution is described in terms of a standard step flow model. Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the discrete step model into a continuum model for surface dynamics. The model consists of differential equations for the functions alpha(t) and F(x). The solutions of these equations agree with simulation results of the discrete step model. We identify two types of possible scaling solutions. Solutions of the first type have facets at the extremum points, while in solutions of the second type the facets are replaced by cusps. Interactions between steps of opposite signs determine whether a system is of the first or second type. Finally, we relate our model to an actual experiment and find good agreement between a measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file

    The profile of a decaying crystalline cone

    Full text link
    The decay of a crystalline cone below the roughening transition is studied. We consider local mass transport through surface diffusion, focusing on the two cases of diffusion limited and attachment-detachment limited step kinetics. In both cases, we describe the decay kinetics in terms of step flow models. Numerical simulations of the models indicate that in the attachment-detachment limited case the system undergoes a step bunching instability if the repulsive interactions between steps are weak. Such an instability does not occur in the diffusion limited case. In stable cases the height profile, h(r,t), is flat at radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz for the time-dependent profile of the cone yields analytical values for the scaling exponents and a differential equation for the scaling function. In the long time limit this equation provides an exact description of the discrete step dynamics. It admits a family of solutions and the mechanism responsible for the selection of a unique scaling function is discussed in detail. Finally we generalize the model and consider permeable steps by allowing direct adatom hops between neighboring terraces. We argue that step permeability does not change the scaling behavior of the system, and its only effect is a renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure

    Determination of horizon size in state-based peridynamics

    Get PDF
    Peridynamics is based on integro-differential equations and has a length scale parameter called horizon which gives peridynamics a non-local character. Currently, there are three main peridynamic formulations available in the literature including bond-based peridynamics, ordinary state-based peridynamics and non-ordinary state-based peridynamics. In this study, the optimum horizon size is determined for ordinary state-based peridynamics and non-ordinary state-based peridynamics formulations by using uniform and non-uniform discretisation under dynamic and static conditions. It is shown that the horizon sizes selected as optimum sizes for uniform discretisation can also be used for non-uniform discretisation without introducing significant error to the system. Moreover, a smaller horizon size can be selected for non-ordinary state-based formulation which can yield significant computational advantage. It is also shown that same horizon size can be used for both static and dynamic problems

    Ensemble Learning for Low-Level Hardware-Supported Malware Detection

    Full text link
    Abstract. Recent work demonstrated hardware-based online malware detection using only low-level features. This detector is envisioned as a first line of defense that prioritizes the application of more expensive and more accurate software detectors. Critical to such a framework is the detection performance of the hardware detector. In this paper, we explore the use of both specialized detectors and ensemble learning tech-niques to improve performance of the hardware detector. The proposed detectors reduce the false positive rate by more than half compared to a single detector, while increasing the detection rate. We also contribute approximate metrics to quantify the detection overhead, and show that the proposed detectors achieve more than 11x reduction in overhead compared to a software only detector (1.87x compared to prior work), while improving detection time. Finally, we characterize the hardware complexity by extending an open core and synthesizing it on an FPGA platform, showing that the overhead is minimal.

    Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care

    Get PDF
    HIV has become one of the most devastating pathogens in human history. Despite fast progress in HIV-related basic research, antiretroviral therapy (ART) remains the most effective method to save AIDS patients' lives. Unfortunately, ART cannot be universally accessed, especially in developing countries, due to the lack of effective treatment monitoring diagnostics. Here, we present an inexpensive, rapid and portable micro-a-fluidic platform, which can streamline the process of an enzyme-linked immunosorbent assay (ELISA) in a fully automated manner for CD4 cell count. The micro-a-fluidic CD4 cell count is achieved by eliminating operational fluid flow via “moving the substrate”, as opposed to “flowing liquid” in traditional ELISA or microfluidic methods. This is the first demonstration of capturing and detecting cells from unprocessed whole blood using the enzyme-linked immunosorbent assay (ELISA) in a microfluidic channel. Combined with cell phone imaging, the presented micro-a-fluidic ELISA platform holds great promise for offering rapid CD4 cell count to scale up much needed ART in resource-constrained settings. The developed system can be extended to multiple areas for ELISA-related assays.the Center for Integration of Medicine and Innovative Technology ; the U.S. Army Medical Research & Materiel Command (USAMRMC) ; the Telemedicine & Advanced Technology Research Center (TATRC).publisher versio
    corecore