55,172 research outputs found

    Series of broad resonances in atomic three-body systems

    Full text link
    We re-examine the series of resonances found earlier in atomic three-body systems by solving the Faddeev-Merkuriev integral equations. These resonances are rather broad and line-up at each threshold with gradually increasing gaps, the same way for all thresholds and irrespective of the spatial symmetry. We relate these resonances to the Gailitis mechanism, which is a consequence of the polarization potential.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with arXiv:0810.303

    Insulating state and the importance of the spin-orbit coupling in Ca3_3CoRhO6_6

    Full text link
    We have carried out a comparative theoretical study of the electronic structure of the novel one-dimensional Ca3_3CoRhO6_6 and Ca3_3FeRhO6_6 systems. The insulating antiferromagnetic state for the Ca3_3FeRhO6_6 can be well explained by band structure calculations with the closed shell high-spin d5d^5 (Fe3+^{3+}) and low-spin t2g6t_{2g}^{6} (Rh3+^{3+}) configurations. We found for the Ca3_3CoRhO6_6 that the Co has a strong tendency to be d7d^7 (Co2+^{2+}) rather than d6d^6 (Co3+^{3+}), and that there is an orbital degeneracy in the local Co electronic structure. We argue that it is the spin-orbit coupling which will lift this degeneracy thereby enabling local spin density approximation + Hubbard U (LSDA+U) band structure calculations to generate the band gap. We predict that the orbital contribution to the magnetic moment in Ca3_3CoRhO6_6 is substantial, i.e. significantly larger than 1 μB\mu_B per formula unit. Moreover, we propose a model for the contrasting intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl

    Model Wavefunctions for the Collective Modes and the Magneto-roton Theory of the Fractional Quantum Hall Effect

    Full text link
    We construct model wavefunctions for the collective modes of fractional quantum Hall systems. The wavefunctions are expressed in terms of symmetric polynomials characterized by a root partition and a "squeezed" basis, and show excellent agreement with exact diagonalization results for finite systems. In the long wavelength limit, the model wavefunctions reduce to those predicted by the single-mode approximation, and remain accurate at energies above the continuum of roton pairs.Comment: 4 pages, 3 figures, minor changes for the final prl versio

    Nonadiabatic Geometric Quantum Computation Using A Single-loop Scenario

    Get PDF
    A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multi-loop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.Comment: 4 pages, 3 figure

    Fragile phase stability in (1-x)Pb(Mg1/3Nb2/3O3)-xPbTiO3 crystals: A comparisons of [001] and [110] field-cooled phase diagrams

    Full text link
    Phase diagrams of [001] and [110] field-cooled (FC) (1-x)Pb(Mg1/3Nb2/3O3)-xPbTiO3 or PMN-xPT crystals have been constructed, based on high-resolution x-ray diffraction data. Comparisons reveal several interesting findings. First, a region of abnormal thermal expansion above the dielectric maximum was found, whose stability range extended to higher temperatures by application of electric field (E). Second, the rhombohedral (R) phase of the ZFC state was replaced by a monoclinic MA in the [001] FC diagram, but with monoclinic MB in the [110] FC. Third, the monoclinic MC phase in ZFC and [001] FC diagram was replaced by an orthorhombic (O) phase in the [110] FC. Finally, in the [001] FC diagram, the phase boundary between tetragonal (T) and MA was extended to lower PT contents (x=0.25); whereas in the [110] FC diagram, this extended region was entirely replaced by the O phase. These results clearly demonstrate that the phase stability of PMN-xPT crystals is quite fragile, depending not only on modest changes in E, but also on the direction along which that E is applied.Comment: 13 pages, 8 figures, 1 tabl

    Semimetal to semimetal charge density wave transition in 1T-TiSe2_2

    Get PDF
    We report an infrared study on 1TT-TiSe2_2, the parent compound of the newly discovered superconductor Cux_xTiSe2_2. Previous studies of this compound have not conclusively resolved whether it is a semimetal or a semiconductor: information that is important in determining the origin of its unconventional CDW transition. Here we present optical spectroscopy results that clearly reveal that the compound is metallic in both the high-temperature normal phase and the low-temperature CDW phase. The carrier scattering rate is dramatically different in the normal and CDW phases and the carrier density is found to change with temperature. We conclude that the observed properties can be explained within the scenario of an Overhauser-type CDW mechanism.Comment: 4 pages, 4 page

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
    corecore