6,896 research outputs found

    Using genetic evolutionary software application testing to verify a DSP SoC

    Get PDF
    Copyright © 2008 IEEEA digital signal processor (DSP) system-on-chip (SoC) can be designed using a variety of architectures and techniques. This often presents different verification challenges compared to conventional SoC or processor designs. Verification of such designs should take into account the goals and applications of the DSP, and how they are eventually used. This paper proposes an application based verification methodology and demonstrates this technique on a real-life DSP SoC design. Our technique employs a library of specially devised application functions as test building blocks, followed by a genetic evolutionary test generator to compose these application functions into effective test programs.Adriel Cheng, Cheng-Chew Lim, Yihe Sun, Hu He, Zhixiong Zhou, Ting Le

    A Calibration Method for the Integrated Design of Finishing Robotic Workcells in the Aerospace Industry

    Get PDF
    Industrial robotics provides high flexibility and reconfigurability, cost effectiveness and user friendly programming for many applications but still lacks in accuracy. An effective workcell calibration reduces the errors in robotic manufacturing and contributes to extend the use of industrial robots to perform high quality finishing of complex parts in the aerospace industry. A novel workcell calibration method is embedded in an integrated design framework for an in-depth exploitation of CAD-based simulation and offline programming. The method is composed of two steps: a first offline calibration of the workpiece-independent elements in the workcell layout and a final automated online calibration of workpiece-dependent elements. The method is finally applied to a robotic workcell for finishing aluminum housings of helicopter gear transmissions, characterized by complex and non-repetitive shapes, and by severe dimensional and geometrical accuracy demands. Experimental results demonstrate enhanced performances of the robotic workcell and improved final quality of the housings

    Resonant neutrino spin-flavor precession and supernova shock revival

    Get PDF
    A new mechanism of supernova shock revival is proposed, which involves resonant spin--flavor precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The mechanism can be operative in supernovae for transition magnetic moments as small as 1014μB10^{-14}\mu_B provided the neutrino mass squared difference is in the range Δm2(3  eV)2(600  eV)2\Delta m^2 \sim (3 \;{\rm eV})^2-(600 \;{\rm eV})^2. It is shown that this mechanism can increase the neutrino--induced shock reheating energy by about 60\%.Comment: 16 pages, latex, 2 figures. added few reference

    A WSN approach to unmanned aerial surveillance of traffic anomalies: Some challenges and potential solutions

    Get PDF
    Stationary CCTV cameras are often used to help monitor car movements and detect any anomalies - e.g., accidents, cars going faster than the allowed speed, driving under the influence of alcohol, etc. The height of the cameras can limit their effectiveness and the types of image processing algorithm which can be used. With advancements in the development of inexpensive aerial flying objects and wireless devices, these two technologies can be coupled to support enhanced surveillance. The flying objects can carry multiple cameras and be sent well above the ground to capture and feed video/image information back to a ground station. In addition, because of the height the objects can achieve, they can capture videos and images which could lend themselves more suitably for the application of a variety of video and image processing algorithms to assist analysts in detecting any anomalies. In this paper, we examine some main challenges of using flying objects for surveillance purposes and propose some potential solutions to these challenges. By doing so, we attempt to provide the basis for developing a framework to build a viable system for improved surveillance based on low-cost equipment. © 2013 IEEE.t.published_or_final_versio

    Creation, doubling, and splitting, of vortices in intracavity second harmonic generation

    Full text link
    We demonstrate generation and frequency doubling of unit charge vortices in a linear astigmatic resonator. Topological instability of the double charge harmonic vortices leads to well separated vortex cores that are shown to rotate, and become anisotropic, as the resonator is tuned across resonance

    Planck-Scale Physics and Solutions to the Strong CP Problem without Axion

    Full text link
    We analyse the impact of quantum gravity on the possible solutions to the strong CP problem which utilize the spontaneously broken discrete symmetries, such as parity and time reversal invariance. We find that the stability of the solution under Planck scale effects provides an upper limit on the scale Λ\Lambda of relevant symmetry breaking. This result is model dependent and the bound is most restrictive for the seesaw type models of fermion masses, with Λ<106\Lambda < 10^6 GeV.Comment: 14 pages, LaTex, IC/92/432, UMDHEP 93-105, LMU-16/92 (minor clarifications in the introduction; missing references are added

    BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.

    Get PDF
    We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases

    Lepton Masses and Mixing in a Left-Right Symmetric Model with a TeV-scale Gravity

    Get PDF
    We construct a left-right symmetric (LRS) model in five dimensions which accounts naturally for the lepton flavor parameters. The fifth dimension is described by an orbifold, S_1/Z_2 times Z'_2, with a typical size of order TeV^{-1}. The fundamental scale is of order 25 TeV which implies that the gauge hierarchy problem is ameliorated. In addition the LRS breaking scale is of order few TeV which implies that interactions beyond those of the standard model are accessible to near future experiments. Leptons of different representations are localized around different orbifold fixed points. This explains, through the Arkani-Hamed-Schmaltz mechanism, the smallness of the tau mass compared to the electroweak breaking scale. An additional U(1) horizontal symmetry, broken by small parameters, yields the hierarchy in the charged lepton masses, strong suppression of the light neutrino masses and accounts for the mixing parameters. The model yields several unique predictions. In particular, the branching ratio for the lepton flavor violating process mu^- --> e^+ e^- e^- is comparable with its present experimental sensitivity.Comment: 21 pages, 1 figure, references added, discussion on the predictiveness of the model in the generic non-universal case added, to appear in PR

    Hierarchical urchin-shaped alpha-MnO2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na-air battery

    Get PDF
    With the increasing demand of cost-effective and high-energy devices, sodium-air (Na-air) batteries have attracted immense interest due to the natural abundance of sodium in contrast to lithium. In particular, an aqueous Na-air battery has fundamental advantage over non-aqueous batteries due to the formation of highly water-soluble discharge product, which improve the overall performance of the system in terms of energy density, cyclic stability and round-trip efficiency. Despite these advantages, the rechargeability of aqueous Na-air batteries has not yet been demonstrated when using non-precious metal catalysts. In this work, we rationally synthesized a binder-free and robust electrode by directly growing urchin-shaped MnO2 nanowires on porous reduced graphene oxide-coated carbon microfiber (MGC) mats and fabricated an aqueous Na-air cell using the MGC as an air electrode to demonstrate the rechargeability of an aqueous Na-air battery. The fabricated aqueous Na-air cell exhibited excellent rechargeability and rate capability with a low overpotential gap (0.7 V) and high round-trip efficiency (81%). We believe that our approach opens a new avenue for synthesizing robust and binder-free electrodes that can be utilized to build not only metal-air batteries but also other energy systems such as supercapacitors, metal-ion batteries and fuel cells.ope
    corecore