

 Copyright © 2008 IEEE.
Reprinted from the IEEE International Symposium on Electronic Design

(4th 2008 : Hong Kong): pp.20-25

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+International+Symposium+on+Electronic+Design+%284th+2008+%3A+Hong+Kong%29�
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+International+Symposium+on+Electronic+Design+%284th+2008+%3A+Hong+Kong%29�

Using Genetic Evolutionary Software Application Testing to Verify a DSP SoC

Abstract
A digital signal processor (DSP) system-on-chip

(SoC) can be designed using a variety of architectures
and techniques. This often presents different verifica-
tion challenges compared to conventional SoC or
processor designs. Verification of such designs should
take into account the goals and applications of the
DSP, and how they are eventually used. This paper
proposes an application based verification methodol-
ogy and demonstrates this technique on a real-life DSP
SoC design. Our technique employs a library of spe-
cially devised application functions as test building
blocks, followed by a genetic evolutionary test genera-
tor to compose these application functions into effec-
tive test programs.

1. Introduction

Design verification of system-on-chips (SoCs) is
expensive and time consuming. It accounts for up to
70% of resources in a typical design project [1]. De-
signing digital signal processor (DSP) SoCs create fur-
ther verification complexities given the range of appli-
cations and end products DSPs are employed within.

In order to test a DSP design more effectively, con-
sideration must be given to how the DSP will be used
and their intended applications. The eventual real-life
usages of a DSP determine the particular design fea-
tures and functions that are needed in the DSP. It is
these design functionalities and their complexities that
must be verified in-depth. Therefore, any effective
verification strategy must incorporate extensive testing
with application functions.

To demonstrate this, the software application level
verification methodology (SALVEM) [7,8] is em-
ployed to test the Tsinghua University Application
Specific DSP (THUASDSP2004) [9]. The SALVEM
technique was successfully used on other SoC previ-
ously [7,8]. The aim of this paper is to describe the
application of SALVEM on a real world DSP SoC;
thus demonstrate its feasibility and usefulness for DSP
testing. Furthermore, for verification of the DSP,
SALVEM is enhanced by an automated test generator
that uses genetic evolutionary methods to create tests.

The THUASDSP2004 DSP is an ideal candidate
for SALVEM. It was designed specifically for multi-
media applications and contains common DSP function
blocks such as high performance mathematical and fast
data transfer units, along with other specialized mod-
ules. These DSP architectural features are to be tested
by SALVEM to enhance the design and verification
quality of the DSP SoC.

The reminder of this paper is as follows. Section 2
summarizes related work in design verification. Sec-
tion 3 describes the DSP SoC design. The SALVEM
verification approach and test generator are outlined in
sections 4 and 5 respectively. Section 6 provides ex-
perimental results before the paper is concluded.

2. Related Work

Various solutions have been previously proposed to
tackle the design verification problem [2,3,4,5]. Many
of these solutions involve an automated test generator
based on some form of pseudo random selection
scheme to create test cases. The advantage with this
approach is that many test cases can be created quickly
with minimal effort. However, testing may not be op-
timized or effective. Due to the inherently random na-
ture of such tests, similar functions may be repeatedly
tested or other important test functions overlooked.
Ideally, the tests generated should cover as much of the
previously untested and critical design functions.

Furthermore, hardware DSP designs require special
verification considerations. Some DSP design and
modeling environments like Matlab or Simulink do not
describe the true hardware design implementation that
will be eventually tape-out. They focus on high level
DSP algorithmic validation, but the actual hardware
design is not tested directly [10]. Another DSP verifi-
cation solution from Coware [6] allows for hardware
design testing. However, to use Coware, designs de-
scribed in Matlab must be synthesized to an equivalent
hardware description using the AccelChip synthesis
tool. These DSP test solutions are not suitable for all
designs. Our THUASDSP2004 SoC contains different
architectural features from conventional DSPs, and
does not use the AccelChip synthesis flow.

Adriel Cheng Cheng-Chew Lim
School of Electrical and Electronic Engineering

The University of Adelaide
Adelaide, SA, Australia 5005

{acheng,cclim}@eleceng.adelaide.edu.au

Yihe Sun Hu He Zhixiong Zhou Ting Lei
Institute of Microelectronics

Tsinghua University
Beijing, China 100084

{sunyh,hehu,zhouzx02,leit}@tsinghua.edu.cn

4th IEEE International Symposium on Electronic Design, Test & Application

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.31

20

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.31

20

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.31

20

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.31

20

Our approach is to employ the SALVEM technique
with an inbuilt genetic evolutionary test generator. The
aim of SALVEM is to create tests based on the appli-
cation use cases of the SoC. Hence, important func-
tionalities critical to the real-life operations of the SoC
are guaranteed to be tested and verified.

The SALVEM approach is similar to the XGEN [5]
method from IBM. Both techniques test the overall
SoC by initiating system-wide transactions. XGEN
identifies low-level system components and interac-
tions to create test cases. SALVEM catalogues the
range of SoC applications and breaks them down into
ANSI-C snippets of test building blocks to create test
programs. XGEN includes a test generator to automati-
cally create their test cases. However, like other ran-
dom test generators, these tests may not be efficient.
Automatically generated tests should be directed by
coverage information to enhance overall coverage.

To facilitate this, the SALVEM technique employs
genetic algorithms and evolutionary strategies (GA/ES)
in its test generator. GA/ES has been applied for in-
struction program test generators previously, this was
described extensively in [4] and the references cited
within. However, they focus exclusive on microproces-
sor testing, whilst our approach here is to verify sys-
tem-wide functions on a SoC.

3. The THUASDSP2004 DSP

The Tsinghua University Application Specific DSP
(THUASDSP2004) SoC [9] consists of a very-long-
instruction-word (VLIW) processor, memories, inter-
rupt and memory controllers, and I/O modules like the
DMA for transferring large signal data. Figure 1 shows
the SoC architecture.

The THUASDSP2004 is designed to be configur-
able for use in various multimedia applications similar
to FPGAs, whilst delivering high performance match-
ing that of an ASIC DSP [9]. To achieve this, the DSP
is built upon a clustered VLIW platform whereby dif-
ferent SoC functions can be grouped into different
clusters or sub-divided into different function units.
Adopting such an approach enables scalability and
flexibility. Depending on the intended usages of the
DSP, the design can cater for different numbers and
configurations of clusters or function units [9].

Signal processing requires intensive numerical cal-
culations and large data storage and transfers. The
THUASDSP2004 DSP contains various configurations
of specialized arithmetic logic, multiply, address
branch, and load/store function units specifically de-
signed for such DSP operations. The THUASDSP2004
DSP also implements a unique register file based on an
inter-cluster communication system [9]. In the DSP, a
global register file is used to network clusters, and fa-
cilitate data transfers between function units. The ad-

vantage from such an implementation is that all data
transfer delays and conventional bus cycle latencies are
eliminated. Using this communication scheme amongst
function units speeds up software pipelining and en-
hances instruction level parallelism [9].

4. SALVEM Verification

Figure 2 summarizes the SALVEM process. (1) Ini-
tially, common use-case applications of the SoC are
identified. Software code segments are extracted from
these use-cases and modularized into software callable
functions called snippets, and placed in the snippets
library. (2) A test generator automatically chooses vari-
ous sequences of these snippets (and assigns values for
their parameters) to create test programs.

Snippets are the test building blocks of SALVEM
test programs. They exercise specific operations and
verify real-life system behaviors on a SoC. Implemen-
tation-wise, snippets are developed in terms of ANSI-C
software parameterized routines.

Figure 1. THUASDSP2004 DSP SoC architecture

Figure 2. SALVEM process

S4-InitDMA
S2-TestInt

S3-TestRegBus

S5-ExecDMA

Snippets Library

Test
Generate

Test Programs

S1-FFT
2

Sn …etc…

1

S2

S1

S5

etc…

Local Registers

Function Units

Cluster A

Local Registers

Function Units

Cluster B

Local Registers

Function Units

Cluster D

Local Registers

Function Units

Cluster C

Global Registers

Instruction Cache (16kB)

Data RAM (32kB)

External
Memory
Interface

DMA

Interrupt
Controller

32bits

21212121

Snippets initiate SoC operations using device driver
application programming interfaces (APIs) to access
SoC control and data components such as configura-
tion registers. Snippets also employ parameters. Given
different parameter values, various SoC operations are
invoked each time the snippet is chosen in a test pro-
gram. The different sequences of snippets and parame-
ters will facilitate a range of SoC tests. The length of a
snippet sequence is constrained by the size of SoC ex-
ecutable program memory that can hold a test program.

4.1. Snippets for DSP SoCs

Snippet test building blocks must be carefully de-
signed keeping in mind the type of SoC under verifica-
tion. A DSP SoC must perform high intensive arithme-
tic operations at sufficiently precise fix or floating
point level. Data handling mechanisms such as address
generation, array handling and data transfers are also
important given the large amounts of signal data that
must be manipulated efficiently. For example, a DSP
often requires many registers to hold temporary or in-
termediate data during processing. To ensure correct-
ness of these DSP functions, a library of snippets for
the SoC was created. Most of these snippets are self-
checking, flagging test failure if snippet operations did
not perform as expected. We describe the main snip-
pets in the remainder of this section.

The THUASDSP2004 DSP consists of a DMA to
handle high throughput transfers of signal data between
various SoC on-chip and external memories. Hence, to
test the DMA functionality, snippets were created to
initialize, execute and check for correctness of DMA
transfers. Furthermore, DMA snippets provide parame-
ters to control transfer of different transaction amounts
between different memory addresses each time the
snippet is selected in a test program.

To initiate SoC operations, snippets rely on low
level device drivers to access various SoC configura-
tion registers. For example, reusing the DMA snippets
from [7], to initialize a DMA transfer requires the
DMA source and destination address registers, and
transfer size registers to be configured. The InitDMA
snippet uses device drivers to initialize these registers
and other snippet parameters to test the DMA differ-
ently each time. Other DMA snippets also access vari-
ous on-chip registers to configure, monitor and validate
DMA transfers, e.g. ExecDMA, TermDMA snippets.

In order to test various arithmetic processing capa-
bilities of the SoC, common DSP operations such as
discrete Fourier or cosine transforms, and filter func-
tions should be applied. These are the types of applica-
tions that use DSP mathematical units and are best
suited for testing them. Hence, snippet functions were
created for the discrete Fast Fourier Transform (FFT),
making use of snippet parameters to vary the type,

range, precision and error tolerance of signal data op-
erations carried out. The FFT snippets also employ
cosine, sine and factorial functions to calculate a range
of n point FFTs that mimic stress-testing of repetitive
and high intensive signal processing operations.

Other specific features of the THUASDSP2004
DSP are also verified by SALVEM snippets. For ex-
ample, the DSP implements a unique global register
file to facilitate inter cluster communication. Each local
register in a cluster has a corresponding associate regis-
ter in the global register file, and vice versa. Whenever
data from one cluster is needed by another cluster, the
result from one cluster is written to both the local and
associate global register. In this way, an external clus-
ter may gather the desired data from the global register
file. Using this double associate register writing
scheme, communication between clusters is achieved.

The snippets employed to test this specialized reg-
ister bus system should invoke repetitive data transfers
and resolve numerous register address selections. To
this end, the TestRegBus snippet we developed is based
on a token ring transfer operation (Figure 3). Initially,
data from any arbitrary cluster is written to both its
local and global registers. The data is then consumed
by another cluster before it is passed back onto the
global register bus and transferred to other clusters;
until finally, the data is checked at the termination
cluster. Figure 3 shows the first three data transfers.
The non-circle enclosed numbers show the global reg-
ister file read/writes, while the circle enclosed numbers
indicate the sequence of inter-cluster transfers.

The parameters of the TestRegBus snippet are the
type and size of data to be transferred, the type and
number of clusters involved in the transfers, and the
transfer start and termination points.

The TestInt interrupt snippet tests the DSP’s inter-
rupt handling and priority mechanism. The parameters
to this snippet specify which interrupts are enabled and
their priorities. Each time the snippet is called into a
test program, different interrupts and priorities will be
chosen to test the interrupt unit differently.

5. Genetic Evolutionary Test Generator

During test generation, the SALVEM test generator
selects a sequence of snippets and snippet parameters
to form a test program. Depending on the sequence of
snippets chosen, a variety of sequential and concurrent
operations on the SoC will be executed. For example,
if DMA and FFT snippets are chosen one after another,
Fourier transforms of signal data can be concurrently
tested whilst data is being shifted between memories.

To create effective and efficient tests, SALVEM
employs genetic algorithms and evolutionary strategies
(GA/ES) [11] to select the snippet sequence and pa-
rameters. In GA/ES test generation, tests are created

22222222

similar to the way individual life organisms are
evolved during an evolutionary process.

The GA/ES SALVEM test generation process is
summarized in Figure 4. In the beginning, test indi-
viduals are created to fill an initial population of µ
number of tests. These initial tests may contain any
number of snippets and relies on the evolution process
to vary the test individuals further.

The GA/ES process then iterates, using the µ popu-
lation of tests to create λ number of new test children
via variation. In variation, the sequence of snippets and
snippets themselves are intermixed and mutated to cre-
ate different tests. Next, fitness evaluation of these new
test individuals is conducted. Fitness evaluation quanti-
fies the SoC coverage attained by the tests. Test selec-
tion is then carried out to retain the best coverage
yielding tests for the next cycle of the GA/ES process.

Based on coverage fitness, only the best tests from
both the parent population (µ) and newly created chil-
dren population (λ) are retained. This new selection of
tests makes up the new population for the next evolu-
tion. Therefore, throughout evolutionary test genera-
tion, only high coverage yielding tests are used to cre-
ate further new tests. Such a selection scheme is called
(µ+λ) selection, it ensures the quality of tests do not
degrade, but improve over time.

The evolutionary cycle then repeats – varying,
evaluating fitness of new tests, and retaining only the
best tests – until the termination condition is met. For
termination, test generation ends when there has been
no coverage improvement of the test suite for the last x
consecutive generations; typically x is between 5 to 10.

Representation and variation of individuals are im-
portant characteristics of a GA/ES process. We discuss
these characteristics in more detail. In Figure 5, the test
suite represents the populations of µ and λ individuals,
and is simply the set of tests generated by SALVEM.
An individual test is equivalent to a chromosome and
snippets act as genes making up the chromosome as
per genetic coding. The snippets library is the set of
available snippets genome.

An important phase in GA/ES test generation is
variation. In variation, a test is selected from the parent
population, then variation operators are applied to cre-
ate new tests. The variation operators are as follows.

The snippet addition operator randomly chooses a
snippet from the snippet library and inserts this new
snippet into the test program at a random point in its
snippet sequence. The aim is to add new snippets that
can invoke interesting combinations of SoC functional-
ities with existing snippets to attain higher coverage.

The subtraction operator removes a snippet from
the test individual. The intention is to eliminate redun-
dant snippets that do not provide additional coverage;
thus enabling the test to run more efficiently and free

up snippet slots so more useful snippets can be added
into the sequence later on. The snippet mutation opera-
tor alters a test individual by modifying the characteris-
tics of a random snippet. Specifically, the mutation
operator modifies the parameters of the snippet.

 Snippet recombination produces new offspring test
programs by selecting two existing test parents and
combining their snippet sequences. First, parents are
selected using tournament selection. Next, the recom-
bination process selects random crossover points from
each parent (Figure 6). The first child test program is
produced by linking the snippet sequence of the first
parent up to its crossover snippet with the snippet se-
quence of the second parent from its corresponding
crossover snippet onwards. The second child test pro-
gram is produced similarly in an inverse manner.

Addition, subtraction, and mutation ensure new
tests are created to explore new areas of the SoC test
space, whilst recombination preserves snippet se-
quences and parameters that maintain high coverage
throughout future generations. In this way, the
SALVEM test suite continues to verify new SoC func-
tions, whilst being guided by tests from previous evo-
lutions that attained high coverage.

6. Experiments and Results

The SALVEM GA/ES test generator was applied to
the THUASDSP2004 SoC to determine the feasibility
of applying such a verification technique for DSP de-
signs. SALVEM conducts simulation and coverage
measurement of test programs using Synopsys VCS on
a register transfer level (RTL) Verilog description of
the SoC design. All experiments were run on a 2.2
GHz AMD CPU and 4GB RAM Linux box.

Figure 3. TestRegBus snippet operation

Global Register File

Local Registers

Function Units

Cluster A
Local Registers

Function Units

Cluster B

Local Registers

Function Units

Cluster D
Local Registers

Function Units

Cluster C

data

1 1

3

2

23… etc…”

1

2

3

start

“pass data
until

termination

23232323

For preliminary experimentation purposes, the test
generator used a basic DSP snippets library that in-
cludes the snippets in Section 4. The test generator was
configured with µ and λ population sizes of 10 and 20
respectively. The test generator is also responsible for
creating the random stream of input data that will be
processed by the SoC. Three separate test generation
runs were conducted targeting line, toggle and condi-
tional coverage as the fitness evaluator. The duration of
each test run was about 50 evolutions. In total, 707,
751, and 785 tests were generated respectively for the
line, toggle and conditional coverage test runs.

For comparison, in addition to GA/ES tests, a ran-
dom test generation process was also conducted. Under
this scheme, all test creation decisions are random
without any influence from previous coverage or other
test information. Snippet sequences and parameter as-
signments are completely random. The random ap-
proach created an equivalent number of tests as GA/ES
for each of the line, toggle and conditional coverage
test runs. By that stage, coverage levels were already
maximized with further improvement unlikely.

The accumulated coverage results and total number
of snippets executed from GA/ES and random tests are
shown in Table 1. For GA/ES, the results represent the
best coverage achieved when the test suite has evolved
to an optimized state.

In the random approach, the number of snippets in
each test was random, as long as the test size did not
exceed SoC memory limits. In contrast, GA/ES tests
contain smaller number of snippets, relying on the evo-
lutionary process to cultivate them into larger test indi-
viduals over time. This provides more efficient usage
and lower test sizes overall.

For all coverage measures, the GA/ES approach at-
tained better results compared to random tests. Despite
more snippets, the random approach could not match
the coverage from GA/ES. The snippets sequences
evolved under the GA/ES method was more effective
compared to randomly combining snippets together.
Conditional coverage is lowest for both test methods.
This is due to the nature of conditional coverage meas-
uring whereby the number of conditional paths to trav-
erse in a design increases exponentially with design
size, and is much more difficult to exercise.

TermDMA

ExecDMA

TestRegBus

InitDMA

FFT

 TestInt

CheckDMA

InitDMA
 FFT

SALVEM Test Suite
(Population)

Test Program
(chromosome)

Snippets Library
(genes)

Snippet, Sn

Figure 5. SALVEM GA/ES test representation

S1P1

S2P1

S3P1

S4P1

S5P1

S1P2

S2P2

S3P2

S4P2

=

Parents Children

S5P2

S6P2

crossover
points

S1P1

S2P1

S4P2

S5P2

S6P2

S1P2

S2P2

S3P2

S3P1

S4P1

S5P1

recombination

Figure 6. Recombination variation operator

SxPy : snippet x
 of parent y

Create
Initial
Tests

Apply
Variation

Parent
Population

µ

New
Children

Population
λ

Fitness
Evaluate

(test
simulation)

Coverage
Results

New
Population

Select

START

µ : number of tests in
 parent population
λ : number of tests in new
 children population

END

Terminate?

no

yes

Figure 4. SALVEM GA/ES test generator flow

24242424

For comparison purposes in Table 1, we use num-
ber of snippets instead of tests because the test sizes
between each GA/ES test process and the random ap-
proach differ. The total number of snippets (and tests)
created by GA/ES each time varies depending on the
variation conducted during the evolutionary process. In
variation, various snippets will be added, removed or
replaced. Therefore, our tests contain different number
of snippets, and one GA/ES test is not equivalent to
one random test. If recombination is used, two new
tests with new sizes are created each time, and each
evolution may end up with more than λ new tests. Note
that the average size of a snippet was 71 lines of ANSI-
C code or approximately 800 bytes after test compila-
tion for both GA/ES and random tests.

Test generation times between the GA/ES and ran-
dom approach were similar and negligible compared to
test simulation times. Over the entire test run, the aver-
age GA/ES test simulation time per snippet was 2.4,
4.4, 5.3 CPU seconds respectively for line, toggle and
conditional coverage. Whilst for random approach, it
took 2.1, 4.7, and 6.0 CPU seconds. The longer test
simulation times for toggle and conditional coverage
arises from the greater computing resources needed to
monitor state elements and track execution paths. In-
cluding other overhead, the GA/ES approach required a
total of approximately 5 days for the three test runs
compared to 8 days for random tests. This was ex-
pected given the larger number of snippets executed
under the random approach.

The application of SALVEM GA/ES test genera-
tion for the DSP required 3 months of a single engi-
neer’s effort. The main effort was the development of
snippets. However, once implemented, the snippets can
be used by the test generator to automatically create
many tests to exercise various scenarios, reducing
overall effort if test cases had to be created manually.

Whilst we did not discover any new bugs, the goal
was to demonstrate SALVEM GA/ES test generation
on a real-world SoC design. By doing so, the design
quality and confidence in error-free SoC operation can
be considered enhanced. Although full coverage was
not attained, our preliminary experiments show that
applying the SALVEM GA/ES technique is indeed
feasible. By expanding our snippets library with more
extensive snippets that perform other DSP filtering,
transforms, or mathematical functions, and analyzing
for remaining dead code in the design, we are confident
full coverage can be achieved with greater efficiency.

7. Conclusions

A verification technique using genetic evolutionary
algorithms to create software application test programs
was applied to a DSP SoC. The technique involves
creating specialized snippets of DSP test building

block functions, and composing different sequences of
these snippets in an evolutionary manner to create
tests. Experiments show the genetic evolutionary ap-
proach is feasible, and will enable further research to
enhance DSP testing based on our approach.

Table 1. Coverage and snippets executed results
Coverage % Line Toggle Conditional

GA/ES 91.3 86.7 80.2
Random-only 83.0 78.1 70.4
Snippets # Line Toggle Conditional

GA/ES 30,400 28,100 42,300
Random-only 56,800 60,100 62,800

8. Acknowledgements
This research paper was supported by the Australia

Endeavour Cheung Kong Award and the Australian
Research Council (Grant No. LP0454838).

9. References
[1] Collett International Research, "2005 IC/ASIC Func-

tional Verification Study," 2005.
[2] A. Aharon, A. Bar-David, B. Dorfman, G. Gofman, M.

Leibowitz, and V. Schwartzburd, "Verification of the
IBM RISC System/6000 by a Dynamic Biased Pseudo-
Random Test Program Generator," IBM System Journal,
vol. 30, pp. 527-538, 1991.

[3] A. Chandra, D. Geist, Y. Wolfsthal, V. Iyengar, D.
Jameson, R. Jawalekar, I. Nair, B. Rosen, M. Mullen, J.
Yoon, and R. Armoni, "AVPGEN – A Test Generator for
Architecture Verification," in IEEE Transaction on Very
Large Scale Integration (VLSI) Systems. Vol. 3, 1995.

[4] F. Corno, E. Sanchez, M. S. Reorda, and G. Squillero,
"Code Generation for Functional Validation of Pipelined
Microprocessors," Journal of Electronic Testing: Theory
and Applications, vol. 20, pp. 269-278, 2004.

[5] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, Guy Aloni,
Y. Katz, M. Farkash, I. Dozoretz, and A. Goldin, "X-
GEN: A Random Test-Case Generator for Systems and
SoCs," in IEEE International High Level Design Valida-
tion and Test Workshop (HLDVT'02), 2002.

[6] CoWare SPW DSP Workbench and AccelChip DSP
Synthesis, http://www.coware.com/news/press263.htm

[7] A. Cheng, A. Parashkevov, and C.C. Lim, "A Software
Test Program Generator for Verifying System-on-Chips,"
in 10th IEEE International High Level Design Validation
and Test Workshop 2005 (HLDVT’05). Napa Valley,
California, USA: IEEE Computer, 2005, pp. 79-86.

[8] A. Cheng, A. Parashkevov, and C.C. Lim, "Verifying
System-on-Chips at the Software Application Level," in
IFIP-WG Very Large Scale Integration System-on-Chip
(VLSI-SoC’05). Australia: 2005, ISBN 07298-0610-3.

[9] Y. Zhang, H. He, Z. Zhou, X. Yang, and Y. Sun, "A
Scalable DSP System for ASIP Design," in Proceedings
of Asian Solid-State Circuit Conference. 2006.

[10] A. Dauman, "Improved Design Methodology for FPGA-
based DSPs," in Embedded Control Europe, April 2005.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, 3rd Ed: Springer-Verlag, 1996.

25252525

	cvr49685.pdf
	49685

