215 research outputs found

    Performance comparison of CVD grown carbon nanofiber based on single- and multi-layer graphene oxides in melt-compounded PA6.6 nanocomposites

    Get PDF
    In the present study, newly design hybrid nanostructures were produced by growing long carbon nanofibers (CNF) on single- and multi-layer graphene oxide (GO) sheets in the presence of catalyst by chemical vapor deposition (CVD). Chemical composition analysis indicated the formation of Fe-C bonds by the deposition of carbon atoms on catalyst surface of Fe2O3 and increasing in C/O atomic ratio confirming CNF growing. These hybrid additives were distributed homogeneously through polyamide 6.6 (PA6.6) chains by high shear thermokinetic mixer in melt phase. Spectroscopic studies showed that the differences in the number of graphene layer in hybrid structures directly affected the crystalline behavior and dispersion state in polymer matrix. Flexural strength and flexural modulus of PA6.6 nanocomposites were improved up to 14.7% and 14% by the integration of 0.5 wt% CNF grown on multi-layer GO, respectively, whereas there was a significant loss in flexural properties of single-layer GO based nanocomposites. Also, the integration of 0.5 wt% multi-layer GO hybrid reinforcement in PA6.6 provided a significant increase in tensile modulus about 24%. Therefore, multi-layer GO with CNF increased the degree of crystallinity in nanocomposites by forming intercalated structure and acted as a nucleating agent causing the improvement in mechanical properties

    New hybrid nano additives for thermoplastic compounding: CVD grown carbon fiber on graphene

    Get PDF
    Nano additives have unique characteristics widely used in high technology applications due to their ultrahigh mechanical and thermal properties. They are not preferred in price sensitive sectors especially in automotive applications because of their high cost. On the other hand, there is a growing interest to use graphene as a reinforcing agent in composite production. At this point, graphene platelet (GNP) produced from the recycle source was used as a template for carbon nanofiber production by using chemical vapor deposition (CVD) technique to overcome commercialization harrier. This bicomponent and novel structure is a good candidate to be used as a reinforcing agent in compound formulations. This produced hybrid additive was dispersed in thennoplastic resin by thennokinetic mixer to get homogeneous dispersion and provide strong interfacial interactions. In the current work, the outstanding properties of graphene with carbon fibers were combined into one type structure. With the further research, the number of graphene layer were adjusted in this hybrid structure to bring a new insight in graphene and its composite applications. After the fabrication of graphene and carbon fiber-based reinforcements with different graphene sources, mechanically and thermally improved Polyamide 6.6 were developed at very low loadings by a thermokinetic high shear mixer. This developed technology will utilize an innovation to produce advanced thermoplastic prepregs including graphene and its hybrid additives with high mechanical properties and increased recycling degree by decreasing manufacturing costs

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Gene Expression Profiling via Multigene Concatemers

    Get PDF
    We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1–3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4–28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis
    corecore