31 research outputs found

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link

    Extreme low dose of 5-fluorouracil reverses MDR in cancer by sensitizing cancer associated fibroblasts and down-regulating P-gp

    Get PDF
    We conducted a prospective, meaningful study of extreme low dose of 5-fluorouracil (5FU) as a metronomic agent targeting cancer associated fibroblasts (CAFs) to reverse Multidrug resistance (MDR) by sensitizing cancer associated fibroblasts and down-regulating P-glycoprotein (P-gp). The combination of 5FU and Taxol inhibited resistant KB-8-5 tumor growth by 79% and H460/Tax-R tumor growth by 55%. The inhibition was significant for both tumor types compared with Taxol treatment alone (p<0.001 and p = 0.0067, respectively). Nevertheless, the low-dose 5FU (2.2 mg/kg compared to the therapeutic dose of 50-150 mg/kg) showed negligible tumor inhibitory effect. The tumor growth inhibition study on resistant tumors demonstrated that the continuous administration of low dose 5FU with Taxol significantly inhibited the tumor growth. The treatment overcomes drug resistance in tumors by down-regulating multi-drug resistance transporter protein (P-gp), and more importantly, by eliminating CAFs recruited by resistant tumors. Compared with traditional metronomic chemotherapy, 5FU as metronomic agent targeting CAFs can avoid the disadvantages resulted from the concomitant administration of antiangiogenetic drug. The approach has good translational potential for clinical trials when treating stroma-rich drug resistant tumors

    Calcium Signaling and the Regulation of Chemosensitivity in Cancer Cells: Role of the Transient Receptor Potential Channels

    No full text
    Cancer cells acquire the ability to modify the calcium signaling network by altering the expression and functions of cation channels, pumps or transporters. Calcium signaling pathways are involved in proliferation, angiogenesis, invasion, immune evasion, disruption of cell death pathways, ECM remodelling, epithelial-mesenchymal transition (EMT) and drug resistance. Among cation channels, a pivotal role is played by the Transient Receptor Potential non-selective cation-permeable receptors localized in plasma membrane, endoplasmic reticulum, mitochondria and lysosomes. Several findings indicate that the dysregulation in calcium signaling induced by TRP channels is responsible for cancer growth, metastasis and chemoresistance. Drug resistance represents a major limitation in the application of current therapeutic regimens and several efforts are spent to overcome it. Here we describe the ability of Transient Receptor Potential Channels to modify, by altering the intracellular calcium influx, the cancer cell sensitivity to chemotherapeutic drugs
    corecore