133 research outputs found

    Tracking the energies of one-dimensional subband edges in quantum point contacts using dc conductance measurements

    Full text link
    The semiconductor quantum point contact has long been a focal point for studies of one-dimensional electron transport. Their electrical properties are typically studied using ac conductance methods, but recent work has shown that the dc conductance can be used to obtain additional information, with a density-dependent Land\'{e} effective g-factor recently reported [T.-M. Chen et al, Phys. Rev. B 79, 081301 (2009)]. We discuss previous dc conductance measurements of quantum point contacts, demonstrating how valuable additional information can be extracted from the data. We provide a comprehensive and general framework for dc conductance measurements that provides a path to improving the accuracy of existing data and obtaining useful additional data. A key aspect is that dc conductance measurements can be used to map the energy of the 1D subband edges directly, giving new insight into the physics that takes place as the spin-split 1D subbands populate. Through a re-analysis of the data obtained by Chen et al, we obtain two findings. The first is that the 2-down subband edge closely tracks the source chemical potential when it first begins populating before dropping more rapidly in energy. The second is that the 2-up subband populates more rapidly as the subband edge approaches the drain potential. This second finding suggests that the spin-gap may stop opening, or even begin to close again, as the 2-up subband continues populating, consistent with recent theoretical calculations and experimental studies.Comment: Published version available at http://iopscience.iop.org/0953-8984/23/36/362201 15 pages, 3 figure

    Signatures of tunable Majorana-fermion edge states

    Full text link
    Chiral Majorana-fermion modes are shown to emerge as edge excitations in a superconductor--topological-insulator hybrid structure that is subject to a magnetic field. The velocity of this mode is tunable by changing the magnetic-field magnitude and/or the superconductor's chemical potential. We discuss how quantum-transport measurements can yield experimental signatures of these modes. A normal lead coupled to the Majorana-fermion edge state through electron tunneling induces resonant Andreev reflections from the lead to the grounded superconductor, resulting in a distinctive pattern of differential-conductance peaks.Comment: (13 pages, Accepted for publication in New Journal of Physics, an extension of and expansion on our previous work arXiv:1210.4057). arXiv admin note: text overlap with arXiv:1210.405

    Reply to Comment on "Strongly Correlated Fractional Quantum Hall Line Junctions"

    Full text link
    In two recent articles [PRL 90, 026802 (2003); PRB 69, 085307 (2004)], we developed a transport theory for an extended tunnel junction between two interacting fractional-quantum-Hall edge channels, obtaining analytical results for the conductance. Ponomarenko and Averin (PA) have expressed disagreement with our theoretical approach and question the validity of our results (cond-mat/0602532). Here we show why PA's critique is unwarranted.Comment: 1 page, no figures, RevTex
    • …
    corecore