6 research outputs found

    How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    Get PDF
    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells

    Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines

    No full text
    Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Despite a multimodal therapy consisting of resection followed by fractionated radiotherapy (RT) combined with the chemotherapeutic agent (CT) temozolomide (TMZ), its recurrence is almost inevitable. Since the immune system is capable of eliminating small tumor masses, a therapy should also aim to stimulate anti-tumor immune responses by induction of immunogenic cell death forms. The histone deacetylase inhibitor valproic acid (VPA) might foster this. Methods Reflecting therapy standards, we applied in our in vitro model fractionated RT with a single dose of 2Gy and clinically relevant concentrations of CT. Not only the impact of RT and/or CT with TMZ and/or VPA on the clonogenic potential and cell cycle of the glioblastoma cell lines T98G, U251MG, and U87MG was analyzed, but also the resulting cell death forms and release of danger signals such as heat-shock protein70 (Hsp70) and high-mobility group protein B1 (HMGB1). Results The clonogenic assays revealed that T98G and U251MG, having mutated tumor suppressor protein p53, are more resistant to RT and CT than U87MG with wild type (WT) p53. In all glioblastoma cells lines, fractionated RT induced a G2 cell cycle arrest, but only in the case of U87MG, TMZ and/or VPA alone resulted in this cell cycle block. Further, fractionated RT significantly increased the number of apoptotic and necrotic tumor cells in all three cell lines. However, only in U87MG, the treatment with TMZ and/or VPA alone, or in combination with fractionated RT, induced significantly more cell death compared to untreated or irradiated controls. While necrotic glioblastoma cells were present after VPA, TMZ especially led to significantly increased amounts of U87MG cells in the radiosensitive G2 cell cycle phase. While CT did not impact on the release of Hsp70, fractionated RT resulted in significantly increased extracellular concentrations of Hsp70 in p53 mutated and WT glioblastoma cells. Conclusions Our results indicate that fractionated RT is the main stimulus for induction of glioblastoma cell death forms with immunogenic potential. The generated tumor cell microenvironment might be beneficial to include immune therapies for GBM in the future

    Additional file 1: Figure S1. of The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation

    Get PDF
    MCF-7 and MDA-MB231 breast cancer cells in the G2 cell cycle phase after hypofractionated irradiation and/or hyperthermia. MCF-7 (A) or MDA-MB231 (B) tumor cells were treated with hypofractionated irradiation (4x4Gy or 6x3Gy) and/or hyperthermia (41,5 °C for 1 h). Ionizing irradiation was applied 4 h before or after hyperthermia on the first and last day of fractionation. 24 h after the last treatment, the cells were harvested. For determination of the DNA content, the cells were stained with PI in the presence of detergent and analyzed by flow cytometry. The percentage of cells in the G2-phase of the cell cycle is displayed. Representative data of one out of three experiments, each performed in triplicates, are presented as mean ¹ SD. Gy: Gray; HT: hyperthermia; w/o: mock treated control. *p <0,05, **p <0,01 compared to w/o; # p <0,05, ## p <0,01 compared to only irradiated samples. (JPEG 359 kb
    corecore