13,665 research outputs found

    Penalized contrast estimator for adaptive density deconvolution

    Get PDF
    The authors consider the problem of estimating the density gg of independent and identically distributed variables X_iX\_i, from a sample Z_1,...,Z_nZ\_1, ..., Z\_n where Z_i=X_i+σϔ_iZ\_i=X\_i+\sigma\epsilon\_i, i=1,...,ni=1, ..., n, Ï”\epsilon is a noise independent of XX, with σϔ\sigma\epsilon having known distribution. They present a model selection procedure allowing to construct an adaptive estimator of gg and to find non-asymptotic bounds for its L_2(R)\mathbb{L}\_2(\mathbb{R})-risk. The estimator achieves the minimax rate of convergence, in most cases where lowers bounds are available. A simulation study gives an illustration of the good practical performances of the method

    Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR

    Get PDF
    Monitoring and detection of ships and oil spills using synthetic aperture radar (SAR) have received a considerable attention over the past few years, notably due to the wide area coverage and day and night all-weather capabilities of SAR systems. Among different polarimetric SAR modes, dual-pol SAR data are widely used for monitoring large ocean and coastal areas. The degree of polarization (DoP) is a fundamental quantity characterizing a partially polarized electromagnetic field, with significantly less computational complexity, readily adaptable for on-board implementation, compared with other well-known polarimetric discriminators. The performance of the DoP is studied for joint ship and oil-spill detection under different polarizations in hybrid/compact and linear dual-pol SAR imagery. Experiments are performed on RADARSAT-2 -band polarimetric data sets, over San Francisco Bay, and -band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico

    Estimation of the Degree of Polarization for Hybrid/Compact and Linear Dual-Pol SAR Intensity Images: Principles and Applications

    Get PDF
    Analysis and comparison of linear and hybrid/compact dual-polarization (dual-pol) synthetic aperture radar (SAR) imagery have gained a wholly new importance in the last few years, in particular, with the advent of new spaceborne SARs such as the Japanese ALOS PALSAR, the Canadian RADARSAT-2, and the German TerraSAR-X. Compact polarimetry, hybrid dual-pol, and quad-pol modes are newly promoted in the literature for future SAR missions. In this paper, we investigate and compare different hybrid/compact and linear dual-pol modes in terms of the estimation of the degree of polarization (DoP). The DoP has long been recognized as one of the most important parameters characterizing a partially polarized electromagnetic wave. It can be effectively used to characterize the information content of SAR data. We study and compare the information content of the intensity data provided by different hybrid/compact and linear dual-pol SAR modes. For this purpose, we derive the joint distribution of multilook SAR intensity images. We use this distribution to derive the maximum likelihood and moment-based estimators of the DoP in hybrid/compact and linear dual-pol modes.We evaluate and compare the performance of these estimators for different modes on both synthetic and real data, which are acquired by RADARSAT-2 spaceborne and NASA/JPL airborne SAR systems, over various terrain types such as urban, vegetation, and ocean

    Time-scale analysis of abrupt changes corrupted by multiplicative noise

    Get PDF
    Multiplicative Abrupt Changes (ACs) have been considered in many applications. These applications include image processing (speckle) and random communication models (fading). Previous authors have shown that the Continuous Wavelet Transform (CWT) has good detection properties for ACs in additive noise. This work applies the CWT to AC detection in multiplicative noise. CWT translation invariance allows to define an AC signature. The problem then becomes signature detection in the time-scale domain. A second-order contrast criterion is defined as a measure of detection performance. This criterion depends upon the first- and second-order moments of the multiplicative process's CWT. An optimal wavelet (maximizing the contrast) is derived for an ideal step in white multiplicative noise. This wavelet is asymptotically optimal for smooth changes and can be approximated for small AC amplitudes by the Haar wavelet. Linear and quadratic suboptimal signature-based detectors are also studied. Closed-form threshold expressions are given as functions of the false alarm probability for three of the detectors. Detection performance is characterized using Receiver Operating Characteristic (ROC) curves computed from Monte-Carlo simulations

    Experiments in Clustering Homogeneous XML Documents to Validate an Existing Typology

    Get PDF
    This paper presents some experiments in clustering homogeneous XMLdocuments to validate an existing classification or more generally anorganisational structure. Our approach integrates techniques for extracting knowledge from documents with unsupervised classification (clustering) of documents. We focus on the feature selection used for representing documents and its impact on the emerging classification. We mix the selection of structured features with fine textual selection based on syntactic characteristics.We illustrate and evaluate this approach with a collection of Inria activity reports for the year 2003. The objective is to cluster projects into larger groups (Themes), based on the keywords or different chapters of these activity reports. We then compare the results of clustering using different feature selections, with the official theme structure used by Inria.Comment: (postprint); This version corrects a couple of errors in authors' names in the bibliograph
    • 

    corecore