47 research outputs found

    Haplotype diversity of the myostatin gene among beef cattle breeds

    Get PDF
    A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations

    Detection of quantitative trait loci for carcass composition traits in pigs

    Get PDF
    A quantitative trait locus (QTL) analysis of carcass composition data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. A total of 488 F2 males issued from six F1 boars and 23 F1 sows, the progeny of six LW boars and six MS sows, were slaughtered at approximately 80 kg live weight and were submitted to a standardised cutting of the carcass. Fifteen traits, i.e. dressing percentage, loin, ham, shoulder, belly, backfat, leaf fat, feet and head weights, two backfat thickness and one muscle depth measurements, ham + loin and back + leaf fat percentages and estimated carcass lean content were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half/full sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Additional analyses were performed to search for multiple linked QTL and imprinting effects. Significant gene effects were evidenced for both leanness and fatness traits in the telomeric regions of SSC 1q and SSC 2p, on SSC 4, SSC 7 and SSC X. Additional significant QTL were identified for ham weight on SSC 5, for head weight on SSC 1 and SSC 7, for feet weight on SSC 7 and for dressing percentage on SSC X. LW alleles were associated with a higher lean content and a lower fat content of the carcass, except for the fatness trait on SSC 7. Suggestive evidence of linked QTL on SSC 7 and of imprinting effects on SSC 6, SSC 7, SSC 9 and SSC 17 were also obtained

    Detection of genes influencing economic traits in three French dairy cattle breeds

    Get PDF
    A project of QTL detection was carried out in the French Holstein, Normande, and Montbéliarde dairy cattle breeds. This granddaughter design included 1 548 artificial insemination bulls distributed in 14 sire families and evaluated after a progeny-test for 24 traits (production, milk composition, persistency, type, fertility, mastitis resistance, and milking ease). These bulls were also genotyped for 169 genetic markers, mostly microsatellites. The QTL were analysed by within-sire linear regression of daughter yield deviations or deregressed proofs on the probability that the son receives one or the other paternal QTL allele, given the marker information. QTL were detected for all traits, including those with a low heritability. One hundred and twenty QTL with a chromosome-wise significance lower than 3% were tabulated. This threshold corresponded to a 15% false discovery rate. Amongst them, 32 were genome-wise significant. Estimates of their contribution to genetic variance ranged from 6 to 40%. Most substitution effects ranged from 0.6 to 1.0 genetic standard deviation. For a given QTL, only 1 to 5 families out of 14 were informative. The confidence intervals of the QTL locations were large and always greater than 20 cM. This experiment confirmed several already published QTL but most of them were original, particularly for non-production traits

    Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep

    Get PDF
    Inheritance of the ovulation rate (OR) in the Lacaune meat breed was studied through records from a small nucleus of 36 hyper-prolific ewes screened on farms on the basis of their natural litter size, and from progeny data of three selected Lacaune sires. These sires were chosen at the AI centre according to their breeding values estimated for the mean and the variability of their daughters' litter size. Non-carrier Lacaune dairy ewes were inseminated to produce 121 F1 daughters and 27 F1 sons. Twelve sons (four from each sire) were used in turn to inseminate non-carrier Lacaune dairy ewes providing 260 BC progeny ewes. F1 and BC progeny were brought from private farms and gathered after weaning on an experimental farm where ovulation rates were recorded in the first and second breeding seasons. With an average of 6.5 records each, the mean OR of hyper-prolific ewes was very high (5.34), and 38.4% of records showed a rate of 6 or more. F1 data showed high repeatability of OR (r = 0.54) within ewe, with significant variability among ewes. High OR (≥ 4) were observed in each family. A segregation analysis provided a significant likelihood ratio and classified the three founders as heterozygous. BC ewes also displayed high repeatability of OR (r = 0.47) and the mean OR varied considerably between families (from 1.24 to 1.78). Seven of the 12 BC families presented high-ovulating ewes (at least one record ≥ 4) and segregation analysis yielded a highly significant likelihood ratio as compared to an empirical test distribution. The high variability of the mean ovulation rate shown by a small group of daughters of BC ewes inseminated by putative carrier F1 rams, and the very high ovulation rate observed for some of these ewe lambs, confirmed the segregation of a major gene with two co-dominant alleles borne by an autosome. The difference between homozygous non-carriers and heterozygous ewes was about one ovulation on the observed scale and 2.2 standard deviations on the underlying scale

    Reproductive Technologies and Genomic Selection in Cattle

    Get PDF
    The recent development of genomic selection induces dramatic changes in the way genetic selection schemes are to be conducted. This review describes the new context and corresponding needs for genomic based selection schemes and how reproductive technologies can be used to meet those needs. Information brought by reproductive physiology will provide new markers and new improved phenotypes that will increase the efficiency of selection schemes for reproductive traits. In this context, the value of the reproductive techniques including assisted embryo based reproductive technologies (Multiple Ovaluation Embryo Transfer and Ovum pick up associated to in vitro Fertilization) is also revisited. The interest of embryo typing is discussed. The recent results obtained with this emerging technology which are compatible with the use of the last generation of chips for genotype analysis may lead to very promising applications for the breeding industry. The combined use of several embryo based reproductive technologies will probably be more important in the near future to satisfy the needs of genomic selection for increasing the number of candidates and to preserve at the same time genetic variability

    Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication)

    Get PDF
    Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers). The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies) and on the selection strategies for improving scrapie resistance while carrying out selection for production traits

    Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness

    Get PDF
    Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation

    Detection of quantitative trait loci for growth and fatness in pigs

    Get PDF
    A quantitative trait locus (QTL) analysis of growth and fatness data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six boars and 23 F1 sows, the progeny of six LW boars and six MS sows, produced 530 F2 males and 573 F2 females. Nine growth traits, i.e. body weight at birth and at 3, 10, 13, 17 and 22 weeks of age, average daily gain from birth to 3 weeks, from 3 to 10 weeks and from 10 to 22 weeks of age, as well as backfat thickness at 13, 17 and 22 weeks of age and at 40 and 60 kg live weight were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using two interval mapping methods: a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half-/full-sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Both methods revealed highly significant gene effects for growth on chromosomes 1, 4 and 7 and for backfat thickness on chromosomes 1, 4, 5, 7 and X, and significant gene effects on chromosome 6 for growth and backfat thickness. Suggestive QTLs were also revealed by both methods on chromosomes 2 and 3 for growth and 2 for backfat thickness. Significant gene effects were detected for growth on chromosomes 11, 13, 14, 16 and 18 and for backfat thickness on chromosome 8, 10, 13 and 14. LW alleles were associated with high growth rate and low backfat thickness, except for those of chromosome 7 and to a lesser extent early-growth alleles on chromosomes 1 and 2 and backfat thickness alleles on chromosome 6

    A first genotyping assay of French cattle breeds based on a new allele of the extension gene encoding the melanocortin-1 receptor (Mc1r)

    Get PDF
    The seven transmembrane domain melanocortin-1 receptor (Mc1r) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. Upon the binding of agonist (melanocortin hormone, α-MSH) or antagonist (Agouti protein) ligands, the melanosomal synthesis of eumelanin and/or phaeomelanin pigments is stimulated or inhibited, respectively. Different alleles of the extension gene were cloned from unrelated animals belonging to French cattle breeds and sequenced. The wild type E allele was mainly present in Normande cattle, the dominant ED allele in animals with black color (i.e. Holstein), whereas the recessive e allele was identified in homozygous animals exhibiting a more or less strong red coat color (Blonde d'Aquitaine, Charolaise, Limousine and Salers). A new allele, named E1, was found in either homozygous (E1/E1) or heterozygous (E1/E) individuals in Aubrac and Gasconne breeds. This allele displayed a 4 amino acid duplication (12 nucleotides) located within the third cytoplasmic loop of the receptor, a region known to interact with G proteins. A first genotyping assay of the main French cattle breeds is described based on these four extension alleles
    corecore