17 research outputs found

    Epigenetic regulation of corneal epithelial differentiation by TET2

    Get PDF
    Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation

    PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes

    Get PDF
    PAX6 is the key transcription factor involved in eye development in humans, but the differential functions of the two PAX6 isoforms, isoform-a and isoform-b, are largely unknown. To reveal their function in the corneal epithelium, PAX6 isoforms, along with reprogramming factors, were transduced into human non-ocular epithelial cells. Herein, we show that the two PAX6 isoforms differentially and cooperatively regulate the expression of genes specific to the structure and functions of the corneal epithelium, particularly keratin 3 (KRT3) and keratin 12 (KRT12). PAX6 isoform-a induced KRT3 expression by targeting its upstream region. KLF4 enhanced this induction. A combination of PAX6 isoform-b, KLF4 and OCT4 induced KRT12 expression. These new findings will contribute to furthering the understanding of the molecular basis of the corneal epithelium specific phenotype

    Limbal BCAM expression identifies a proliferative progenitor population capable of holoclone formation and corneal differentiation

    Get PDF
    The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation

    Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells

    Get PDF
    We describe a protocol for the generation of a functional and transplantable corneal epithelium derived from human induced pluripotent stem (iPS) cells. When this protocol is followed, a proportion of iPS cells spontaneously form circular colonies, each of which is composed of four concentric zones. Cells in these zones have different morphologies and immunostaining characteristics, resembling neuroectoderm, neural crest, ocular-surface ectoderm, or surface ectoderm. We have named this 2D colony a 'SEAM' (self-formed ectodermal autonomous multizone), and previously demonstrated that cells within the SEAM have the potential to give rise to anlages of different ocular lineages, including retinal cells, lens cells, and ocular-surface ectoderm. To investigate the translational potential of the SEAM, cells within it that resemble ocular-surface epithelia can be isolated by pipetting and FACS sorting into a population of corneal epithelial-like progenitor cells. These can be expanded and differentiated to form an epithelial layer expressing K12 and PAX6, and able to recover function in an animal model of corneal epithelial dysfunction after surgical transplantation. The whole protocol, encompassing human iPS cell preparation, autonomous differentiation, purification, and subsequent differentiation, takes between 100 and 120 d, and is of potential use to researchers with an interest in eye development and/or ocular-surface regeneration. Experience with human iPS cell culture and sorting via FACS will be of benefit for researchers performing this protocol

    A novel combination therapy with Cabozantinib and Honokiol effectively inhibits c-Met-Nrf2-induced renal tumor growth through increased oxidative stress

    No full text
    Receptor tyrosine kinase (RTK), c-Met, is overexpressed and hyper active in renal cell carcinoma (RCC). Most of the therapeutic agents mediate cancer cell death through increased oxidative stress. Induction of c-Met in renal cancer cells promotes the activation of redox-sensitive transcription factor Nrf2 and cytoprotective heme oxygenase-1 (HO-1), which can mediate therapeutic resistance against oxidative stress. c-Met/RTK inhibitor, Cabozantinib, has been approved for the treatment of advanced RCC. However, acquired drug resistance is a major hurdle in the clinical use of cabozantinib. Honokiol, a naturally occurring phenolic compound, has a great potential to downregulate c-Met-induced pathways. In this study, we found that a novel combination treatment with cabozantinib + Honokiol inhibits the growth of renal cancer cells in a synergistic manner through increased production of reactive oxygen species (ROS); and it significantly facilitates apoptosis-and autophagy-mediated cancer cell death. Activation of c-Met can induce Rubicon (a negative regulator of autophagy) and p62 (an autophagy adaptor protein), which can stabilize Nrf2. By utilizing OncoDB online database, we found a positive correlation among c-Met, Rubicon, p62 and Nrf2 in renal cancer. Interestingly, the combination treatment significantly downregulated Rubicon, p62 and Nrf2 in RCC cells. In a tumor xenograft model, this combination treatment markedly inhibited renal tumor growth in vivo; and it is associated with decreased expression of Rubicon, p62, HO-1 and vessel density in the tumor tissues. Together, cabozantinib + Honokiol combination can significantly inhibit c-Met-induced and Nrf2-mediated anti-oxidant pathway in renal cancer cells to promote increased oxidative stress and tumor cell death

    Protocol for isolating human BCAM-positive corneal progenitor cells by flow cytometry and cell sorting

    Get PDF
    Summary: BCAM-positive basal limbal epithelial cells are an early transit-amplifying cell population (TAC) capable of holoclone formation and corneal epithelial differentiation. Here, we present a protocol for isolating BCAM-positive cells from human donor corneas by flow cytometry and cell sorting. We describe steps for cell dissection and dissociation, antibody staining, and flow cytometry. We then detail procedures for culturing the purified BCAM-positive and BCAM-negative cells for holoclone and cell sheet formation assays to study the factors that regulate corneal regeneration.For complete details on the use and execution of this protocol, please refer to Sasamoto et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
    corecore