122 research outputs found

    A Unified Approximation Framework for Compressing and Accelerating Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have achieved significant success in a variety of real world applications, i.e., image classification. However, tons of parameters in the networks restrict the efficiency of neural networks due to the large model size and the intensive computation. To address this issue, various approximation techniques have been investigated, which seek for a light weighted network with little performance degradation in exchange of smaller model size or faster inference. Both low-rankness and sparsity are appealing properties for the network approximation. In this paper we propose a unified framework to compress the convolutional neural networks (CNNs) by combining these two properties, while taking the nonlinear activation into consideration. Each layer in the network is approximated by the sum of a structured sparse component and a low-rank component, which is formulated as an optimization problem. Then, an extended version of alternating direction method of multipliers (ADMM) with guaranteed convergence is presented to solve the relaxed optimization problem. Experiments are carried out on VGG-16, AlexNet and GoogLeNet with large image classification datasets. The results outperform previous work in terms of accuracy degradation, compression rate and speedup ratio. The proposed method is able to remarkably compress the model (with up to 4.9x reduction of parameters) at a cost of little loss or without loss on accuracy.Comment: 8 pages, 5 figures, 6 table

    Write-Optimized Indexing for Log-Structured Key-Value Stores

    Get PDF
    The recent shift towards write-intensive workload on big data (e.g., financial trading, social user-generated data streams) has pushed the proliferation of the log-structured key-value stores, represented by Google’s BigTable, HBase and Cassandra; these systems optimize write performance by adopting a log-structured merge design. While providing key-based access methods based on a Put/Get interface, these key-value stores do not support value-based access methods, which significantly limits their applicability in many web and Internet applications, such as real-time search for all tweets or blogs containing “government shutdown”. In this paper, we present HINDEX, a write-optimized indexing scheme on the log-structured key-value stores. To index intensively updated big data in real time, the index maintenance is made lightweight by a design tailored to the unique characteristic of the underlying log-structured key-value stores. Concretely, HINDEX performs append-only index updates, which avoids the reading of historic data versions, an expensive operation in the log-structure store. To fix the potentially obsolete index entries, HINDEX proposes an offline index repair process through tight coupling with the routine compactions. HINDEX’s system design is generic to the Put/Get interface; we implemented a prototype of HINDEX based on HBase without internal code modification. Our experiments show that the HINDEX offers significant performance advantage for the write-intensive index maintenance

    Adaptive beamforming for optical wireless communication via fiber modal control

    Full text link
    High-speed optical wireless communication can address the exponential growth in data traffic. Adaptive beamforming customized for the target location is crucial, but existing solutions such as liquidcrystal spatial light modulators and microelectromechanical systems require costly micro/nano manufacturing, delicate alignment, and a high degree of mechanical stability. These challenges reflect the fragility of integrating a fiber network with micro/nano mechanical or photonic systems. Here, we realize low-cost, low-loss, and fiber-compatible beamforming and continuous beam steering through controlled bending of a multi-mode fiber that modifies its modal coupling, and use it to enable flexible optical wireless communication at 10 Gb/s. By using the fiber modal coupling as degrees of freedom rather than an impediment, this approach offers a promising solution for flexible and cost-effective optical wireless communication networks.Comment: 17 pages, 7 figure

    Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes

    Get PDF
    Background and Objectives: Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods: The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein–protein interaction (PPI) was performed. Results: A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions: Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts

    AMP as a Low-Energy Charge Signal Autonomously Initiates Assembly of AXIN-AMPK-LKB1 Complex for AMPK Activation

    Get PDF
    The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.http://news.xmu.edu.cn/s/13/t/542/22/a9/info139945.ht

    Deep-Sequencing Analysis of the Mouse Transcriptome Response to Infection with Brucella melitensis Strains of Differing Virulence

    Get PDF
    Brucella melitensis is an important zoonotic pathogen that causes brucellosis, a disease that affects sheep, cattle and occasionally humans. B. melitensis strain M5-90, a live attenuated vaccine cultured from B. melitensis strain M28, has been used as an effective tool in the control of brucellosis in goats and sheep in China. However, the molecular changes leading to attenuated virulence and pathogenicity in B. melitensis remain poorly understood. In this study we employed the Illumina Genome Analyzer platform to perform genome-wide digital gene expression (DGE) analysis of mouse peritoneal macrophage responses to B. melitensis infection. Many parallel changes in gene expression profiles were observed in M28- and M5-90-infected macrophages, suggesting that they employ similar survival strategies, notably the induction of anti-inflammatory and antiapoptotic factors. Moreover, 1019 differentially expressed macrophage transcripts were identified 4 h after infection with the different B. melitensis strains, and these differential transcripts notably identified genes involved in the lysosome and mitogen-activated protein kinase (MAPK) pathways. Further analysis employed gene ontology (GO) analysis: high-enrichment GOs identified endocytosis, inflammatory, apoptosis, and transport pathways. Path-Net and Signal-Net analysis highlighted the MAPK pathway as the key regulatory pathway. Moreover, the key differentially expressed genes of the significant pathways were apoptosis-related. These findings demonstrate previously unrecognized changes in gene transcription that are associated with B. melitensis infection of macrophages, and the central signaling pathways identified here merit further investigation. Our data provide new insights into the molecular attenuation mechanism of strain M5-90 and will facilitate the generation of new attenuated vaccine strains with enhanced efficacy

    A framework and dynamic model for reform of residential land supply policy in urban China

    No full text
    Urban residential land supply is both driven by and significantly influences urbanisation processes, the optimisation of which are necessary to address housing issues. At present, China’s urban housing system has three major problems, namely a shortage of affordable housing, rapidly increasing prices for regular commodity housing, and an under-supply, relative to market demands, of high-end commodity housing, calling into question the effectiveness of existing land supply policies. This paper first reviews policies governing residential land supply and then considers these policies in light of findings from semi-structured interviews conducted with key actors and a survey of households in Hangzhou, a city of more than nine million in eastern China. These analyses show that although the Chinese government has undertaken steps to reform land use allocation and increase housing affordability in its cities, significant opportunities for reform remain in both affordable and commodity housing sectors. Results from this study aid in formulation of a framework for residential land supply and a dynamic model for reform for Chinese governments to undertake to integrate housing provision across a range of household income and housing type classifications. The model demonstrates how reformation of the residential land supply system through improvements to the elasticity of residential land supply, optimisation of land supply for affordable housing, deregulation of land supply for and taxation of high-end commodity housing will significantly ease housing stress within Chinese cities. Finally, international experience indicates that the Chinese government can leverage revenues to acquire or otherwise support construction of additional affordable housing, with the increased volume of activity helping to arrest housing price inflation while achieving socialist ideals
    corecore