142 research outputs found

    Applied Technologies and Prospects of Conformance Control Treatments in China

    Get PDF
    China is the largest user of chemical-based conformance control treatments and a series of technologies have been successfully developed and deployed in recent years. This paper first shows the milestones of development and application of conformance control technologies in China. Then integrated conformance control technologies are reviewed followed by the lessons we have learned, and then a few major specific conformance control technologies are addressed, including tracer injection and channels explanation, potentiometric testing to identify areal sweep efficiency, Pressure Index (PI) decisionmaking technology to select well candidate, complementary decision-making technology to select well candidate and design application parameters, and major chemicals for in-depth fluid diversion technologies. In addition, this paper also describes the principles and applications of some promising technologies of combined chemical-based conformance treatment with other EOR/IOR process, including the combination technology of surfactant and water shutoff, profile control and mini-scale surfactant flooding, acid treatment and profile control treatment. Finally, this paper summarizes the problems and challenges faced by mature water flooded oilfields in China. Based on recent well tests, tracer testing and interpretation, and previous water control treatment experience, it appears that channels or high permeability streaks are common in mature water flooded oilfields. Some research directions and promising technologies are suggested

    A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures

    Get PDF
    BACKGROUND: The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, POPS has never been applied in teaching immunology in China. The aim of this study was to develop POPS in teaching immunology and assess students’ and teachers’ perception to POPS. METHODS: 321 second-year medical students were divided into two groups: I and II. Group I, comprising 110 students, was taught by POPS, and 16 immunology teachers witnessed the whole teaching process. Group II including the remaining 211 students was taught through traditional lectures. The results of the pre- and post-test of both groups were compared. Group I students and teachers then completed a self-structured feedback questionnaire for analysis before a discussion meeting attended only by the teachers was held. RESULTS: Significant improvement in the mean difference between the pre- and post-test scores of those in Groups I and II was seen, demonstrating the effectiveness of POPS teaching. Most students responded that POPS facilitates self-learning, helps them to understand topics and creates interest, and 88.12% of students favored POPS over simple lectures. Moreover, while they responded that POPS facilitated student learning better than lectures, teachers pointed out that limited teaching resources would make it difficult for wide POPS application in China. CONCLUSIONS: While POPS can break up the monotony of dialectic lectures and serve as a better teaching method, it may not be feasible for the current educational environment in China. The main reason for this is the relative shortage of teaching resources such as space, library facilities and well-trained teachers

    Causal-DFQ: Causality Guided Data-free Network Quantization

    Full text link
    Model quantization, which aims to compress deep neural networks and accelerate inference speed, has greatly facilitated the development of cumbersome models on mobile and edge devices. There is a common assumption in quantization methods from prior works that training data is available. In practice, however, this assumption cannot always be fulfilled due to reasons of privacy and security, rendering these methods inapplicable in real-life situations. Thus, data-free network quantization has recently received significant attention in neural network compression. Causal reasoning provides an intuitive way to model causal relationships to eliminate data-driven correlations, making causality an essential component of analyzing data-free problems. However, causal formulations of data-free quantization are inadequate in the literature. To bridge this gap, we construct a causal graph to model the data generation and discrepancy reduction between the pre-trained and quantized models. Inspired by the causal understanding, we propose the Causality-guided Data-free Network Quantization method, Causal-DFQ, to eliminate the reliance on data via approaching an equilibrium of causality-driven intervened distributions. Specifically, we design a content-style-decoupled generator, synthesizing images conditioned on the relevant and irrelevant factors; then we propose a discrepancy reduction loss to align the intervened distributions of the pre-trained and quantized models. It is worth noting that our work is the first attempt towards introducing causality to data-free quantization problem. Extensive experiments demonstrate the efficacy of Causal-DFQ. The code is available at https://github.com/42Shawn/Causal-DFQ.Comment: Accepted to ICCV202

    High-level expression and large-scale preparation of soluble HBx antigen from Escherichia coli

    Get PDF
    The HBx (hepatitis B virus X protein) is a multifunctional regulator of cellular signal transduction and transcription pathways in host-infected cells. Evidence suggests that HBx has a critical role in the pathogenesis of hepatocellular carcinoma. However, the lack of efficient large-scale preparation methods for soluble HBx has hindered studies on the structure and function of HBx. Here, a new pMAL-c2x protein fusion and purification system was used for high-level expression of soluble HBx fusion protein. The high-purity fusion protein was obtained via amylose resin chromatography and Q-Sepharose chromatography. The untagged HBx was efficiently and rapidly purified by Sephadex G-75 chromatography after cleavage by Factor Xa at 23 °C. The purity of active HBx protein was >99% with a very stable secondary structure dominated by α-helix, β-sheet and random structure. The purified HBx protein can be analysed to determine its crystal structure and function and its capabilities as an effective immunogen

    Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis

    Get PDF
    Introduction: Increasing evidence indicates that microRNAs (miRNAs) play a critical role in the pathogenesis of inflammatory diseases. The aim of the study was to investigate the expression pattern and function of miRNAs in CD4 + T cells from patients with rheumatoid arthritis (RA).Methods: The expression profile of miRNAs in CD4 + T cells from synovial fluid (SF) and peripheral blood of 33 RA patients was determined by microarray assay and validated by qRT-PCR analysis. The correlation between altered expression of miRNAs and cytokine levels was determined by linear regression analysis. The role of miR-146a overexpression in regulating T cell apoptosis was evaluated by flow cytometry. A genome-wide gene expression analysis was further performed to identify miR-146a-regulated genes in T cells.Results: miRNA expression profile analysis revealed that miR-146a expression was significantly upregulated while miR-363 and miR-498 were downregulated in CD4 + T cells of RA patients. The level of miR-146a expression was positively correlated with levels of tumor necrosis factor-alpha (TNF-α), and in vitro studies showed TNF-α upregulated miR-146a expression in T cells. Moreover, miR-146a overexpression was found to suppress Jurkat T cell apoptosis. Finally, transcriptome analysis of miR-146a overexpression in T cells identified Fas associated factor 1 (FAF1) as a miR-146a-regulated gene, which was critically involved in modulating T cell apoptosis.Conclusions: We have detected increased miR-146a in CD4 + T cells of RA patients and its close correlation with TNF-α levels. Our findings that miR-146a overexpression suppresses T cell apoptosis indicate a role of miR-146a in RA pathogenesis and provide potential novel therapeutic targets. © 2010 Li et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.published_or_final_versio

    Stretchable Self-Healing Polymeric Networks with Recyclability and Dual Responsiveness

    Get PDF
    Intelligent polymers with tough networks are of considerable significance for thedevelopment of highly proficient polymer science and technology. In this work, polymeric elastomers with integrated stretchable and self-healable characteristics were designed by cross-linking hyperbranched polymers with flexible segments. The hyperbranched polymer with multiple terminal groups provided various cross-linking points, so that mechanically robust networks could be achieved. Driven by the reversibility of imine and disulfide bonds employed, the elastomers exhibited good self-healing property and the healing efficiency reached up to 99% under ambient environments. Furthermore, the dynamic reversibility of the polymers was investigated at molecular level. The imine and disulfide bonds were incorporated into the networks to construct soluble and recyclable hyperbranched polymer with pH and redox responsiveness via A2+B3 approach and Schiff base polymerization. The polymers containing imine bonds could complete the polymerization–depolymerizationtransition and undergo reversible cycles for several times through changing pH. Moreover, in the presence of disulfide bonds, the polymers were provided with redox cleavage property triggered by dithiothreitol. This study may provide new opportunities for the design and application of intelligent polymers with tough networks through regulating topological structures

    Inside the NIGM Grid Service: Implementation, Evaluation and Extension

    Full text link
    Chinese and Western medicine s have a different understanding and approach to life, health, and illness -joining their complementary work and support them by an advanced information technology could result in an improved health system. The Non-Invasive Blood Glucose Measurement (NIGM) Service is a grid based implementation of a novel non-invasive method for measuring human blood glucose values exploiting Chinese meridian theory. In this paper, we describe the implementation of the NIGM service in detail, present an initial performance evaluation and discuss an extension towards other non-invasive long term diabetic relevant measurement. Additionally, the adaption of the ontology-based Medical records Annotation Tool (MedAT) framework towards usage in NIGM trails is elaborated. ? 2008 IEEE.EI

    Global Mapping of H3K4me1 and H3K4me3 Reveals the Chromatin State-Based Cell Type-Specific Gene Regulation in Human Treg Cells

    Get PDF
    Regulatory T cells (Treg) contribute to the crucial immunological processes of self-tolerance and immune homeostasis. Genomic mechanisms that regulate cell fate decisions leading to Treg or conventional T cells (Tconv) lineages and those underlying Treg function remain to be fully elucidated, especially at the histone modification level. We generated high-resolution genome-wide distribution maps of monomethylated histone H3 lysine 4 (H3K4me1) and trimethylated H3K4 (H3K4me3) in human CD4+CD25+FOXP3+ Tregs and CD4+CD25+FOXP3− activated (a)Tconv cells by DNA sequencing-by-synthesis. 2115 H3K4me3 regions corresponded to proximal promoters; in Tregs, the genes associated with these regions included the master regulator FOXP3 and the chemokine (C-C motif) receptor 7 (CCR7). 41024 Treg-specific H3K4me1 regions were identified. The majority of the H3K4me1 regions differing between Treg and aTconv cells were located at promoter-distal sites, and in vitro reporter gene assays were used to evaluate and identify novel enhancer activity. We provide for the first time a comprehensive genome-wide dataset of lineage-specific H3K4me1 and H3K4me3 patterns in Treg and aTconv cells, which may control cell type-specific gene regulation. This basic principle is likely not restricted to the two closely-related T cell populations, but may apply generally to somatic cell lineages in adult organisms

    SNP rs3803264 polymorphisms in THSD1 and abnormally expressed mRNA are associated with hemorrhagic stroke

    Get PDF
    BackgroundThrombospondin Type 1 Domain Containing Protein 1 (THSD1) has been suggested to be a new regulator of endothelial barrier function in the angiogenesis process, preserving vascular integrity. We sought to characterize the association of THSD1 genetic variants and mRNA expression with the risk of hemorrhagic stroke (HS) with population-based evidence.MethodsA case–control study was conducted with 843 HS cases and 1,400 healthy controls. A cohort study enrolled 4,080 participants free of stroke at baseline in 2009 and followed up to 2022. A synonymous variant, the main tag SNP rs3803264 of the THSD1 gene, was genotyped in all subjects, and peripheral leukocyte THSD1 mRNA expression was detected using RT-qPCR in 57 HS cases and 119 controls.ResultsIn the case–control study, rs3803264 AG/GG variations are associated with a decreased risk of HS with odd ratio (OR) and 95% confidence interval (CI) of the dominant model of 0.788 (0.648–0.958), p = 0.017. In addition, rs3803264 and dyslipidemia had a multiplicative interaction [OR (95% CI) = 1.389 (1.032, 1.869), p = 0.030]. In the cohort study, a similar association strength of rs3803264 dominant model and the risk of HS was observed with the incidence rate ratio (IRR) of 0.734 and p-value of 0.383. Furthermore, the risk of HS showed a non-linear as THSD1 mRNA expression increased (p for non-linearity <0.001). For the subjects without hypertension, we observed THSD1 mRNA expression had a negative correlation with systolic blood pressure (SBP; ρ = −0.334, p = 0.022).ConclusionSNP rs3803264 polymorphisms in THSD1 are associated with the decreased risk of HS and interacted with dyslipidemia, and a non-linear association was observed between THSD1 mRNA expression and the risk of HS
    corecore